| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnsub.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspsnsub.s |
⊢ − = ( -g ‘ 𝑊 ) |
| 3 |
|
lspsnsub.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lspsnsub.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 5 |
|
lspsnsub.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 6 |
|
lspsnsub.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 7 |
1 2
|
lmodvsubcl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
| 8 |
4 5 6 7
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
| 9 |
|
eqid |
⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) |
| 10 |
1 9 3
|
lspsnneg |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑋 − 𝑌 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) } ) = ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) |
| 11 |
4 8 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) } ) = ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) |
| 12 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 14 |
1 2 9
|
grpinvsub |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| 15 |
13 5 6 14
|
syl3anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) = ( 𝑌 − 𝑋 ) ) |
| 16 |
15
|
sneqd |
⊢ ( 𝜑 → { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) } = { ( 𝑌 − 𝑋 ) } ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ ( 𝑋 − 𝑌 ) ) } ) = ( 𝑁 ‘ { ( 𝑌 − 𝑋 ) } ) ) |
| 18 |
11 17
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑌 − 𝑋 ) } ) ) |