Metamath Proof Explorer


Theorem lspsnsub

Description: Swapping subtraction order does not change the span of a singleton. (Contributed by NM, 4-Apr-2015)

Ref Expression
Hypotheses lspsnsub.v 𝑉 = ( Base ‘ 𝑊 )
lspsnsub.s = ( -g𝑊 )
lspsnsub.n 𝑁 = ( LSpan ‘ 𝑊 )
lspsnsub.w ( 𝜑𝑊 ∈ LMod )
lspsnsub.x ( 𝜑𝑋𝑉 )
lspsnsub.y ( 𝜑𝑌𝑉 )
Assertion lspsnsub ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑌 𝑋 ) } ) )

Proof

Step Hyp Ref Expression
1 lspsnsub.v 𝑉 = ( Base ‘ 𝑊 )
2 lspsnsub.s = ( -g𝑊 )
3 lspsnsub.n 𝑁 = ( LSpan ‘ 𝑊 )
4 lspsnsub.w ( 𝜑𝑊 ∈ LMod )
5 lspsnsub.x ( 𝜑𝑋𝑉 )
6 lspsnsub.y ( 𝜑𝑌𝑉 )
7 1 2 lmodvsubcl ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) ∈ 𝑉 )
8 4 5 6 7 syl3anc ( 𝜑 → ( 𝑋 𝑌 ) ∈ 𝑉 )
9 eqid ( invg𝑊 ) = ( invg𝑊 )
10 1 9 3 lspsnneg ( ( 𝑊 ∈ LMod ∧ ( 𝑋 𝑌 ) ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( invg𝑊 ) ‘ ( 𝑋 𝑌 ) ) } ) = ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) )
11 4 8 10 syl2anc ( 𝜑 → ( 𝑁 ‘ { ( ( invg𝑊 ) ‘ ( 𝑋 𝑌 ) ) } ) = ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) )
12 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
13 4 12 syl ( 𝜑𝑊 ∈ Grp )
14 1 2 9 grpinvsub ( ( 𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉 ) → ( ( invg𝑊 ) ‘ ( 𝑋 𝑌 ) ) = ( 𝑌 𝑋 ) )
15 13 5 6 14 syl3anc ( 𝜑 → ( ( invg𝑊 ) ‘ ( 𝑋 𝑌 ) ) = ( 𝑌 𝑋 ) )
16 15 sneqd ( 𝜑 → { ( ( invg𝑊 ) ‘ ( 𝑋 𝑌 ) ) } = { ( 𝑌 𝑋 ) } )
17 16 fveq2d ( 𝜑 → ( 𝑁 ‘ { ( ( invg𝑊 ) ‘ ( 𝑋 𝑌 ) ) } ) = ( 𝑁 ‘ { ( 𝑌 𝑋 ) } ) )
18 11 17 eqtr3d ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) = ( 𝑁 ‘ { ( 𝑌 𝑋 ) } ) )