| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnsub.v |
|- V = ( Base ` W ) |
| 2 |
|
lspsnsub.s |
|- .- = ( -g ` W ) |
| 3 |
|
lspsnsub.n |
|- N = ( LSpan ` W ) |
| 4 |
|
lspsnsub.w |
|- ( ph -> W e. LMod ) |
| 5 |
|
lspsnsub.x |
|- ( ph -> X e. V ) |
| 6 |
|
lspsnsub.y |
|- ( ph -> Y e. V ) |
| 7 |
1 2
|
lmodvsubcl |
|- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) |
| 8 |
4 5 6 7
|
syl3anc |
|- ( ph -> ( X .- Y ) e. V ) |
| 9 |
|
eqid |
|- ( invg ` W ) = ( invg ` W ) |
| 10 |
1 9 3
|
lspsnneg |
|- ( ( W e. LMod /\ ( X .- Y ) e. V ) -> ( N ` { ( ( invg ` W ) ` ( X .- Y ) ) } ) = ( N ` { ( X .- Y ) } ) ) |
| 11 |
4 8 10
|
syl2anc |
|- ( ph -> ( N ` { ( ( invg ` W ) ` ( X .- Y ) ) } ) = ( N ` { ( X .- Y ) } ) ) |
| 12 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
| 13 |
4 12
|
syl |
|- ( ph -> W e. Grp ) |
| 14 |
1 2 9
|
grpinvsub |
|- ( ( W e. Grp /\ X e. V /\ Y e. V ) -> ( ( invg ` W ) ` ( X .- Y ) ) = ( Y .- X ) ) |
| 15 |
13 5 6 14
|
syl3anc |
|- ( ph -> ( ( invg ` W ) ` ( X .- Y ) ) = ( Y .- X ) ) |
| 16 |
15
|
sneqd |
|- ( ph -> { ( ( invg ` W ) ` ( X .- Y ) ) } = { ( Y .- X ) } ) |
| 17 |
16
|
fveq2d |
|- ( ph -> ( N ` { ( ( invg ` W ) ` ( X .- Y ) ) } ) = ( N ` { ( Y .- X ) } ) ) |
| 18 |
11 17
|
eqtr3d |
|- ( ph -> ( N ` { ( X .- Y ) } ) = ( N ` { ( Y .- X ) } ) ) |