| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspsnneg.v |
|- V = ( Base ` W ) |
| 2 |
|
lspsnneg.m |
|- M = ( invg ` W ) |
| 3 |
|
lspsnneg.n |
|- N = ( LSpan ` W ) |
| 4 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 5 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 6 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
| 7 |
|
eqid |
|- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
| 8 |
1 2 4 5 6 7
|
lmodvneg1 |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) = ( M ` X ) ) |
| 9 |
8
|
sneqd |
|- ( ( W e. LMod /\ X e. V ) -> { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) } = { ( M ` X ) } ) |
| 10 |
9
|
fveq2d |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) } ) = ( N ` { ( M ` X ) } ) ) |
| 11 |
|
simpl |
|- ( ( W e. LMod /\ X e. V ) -> W e. LMod ) |
| 12 |
4
|
lmodfgrp |
|- ( W e. LMod -> ( Scalar ` W ) e. Grp ) |
| 13 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 14 |
4 13 6
|
lmod1cl |
|- ( W e. LMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 15 |
13 7
|
grpinvcl |
|- ( ( ( Scalar ` W ) e. Grp /\ ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 16 |
12 14 15
|
syl2anc |
|- ( W e. LMod -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 17 |
16
|
adantr |
|- ( ( W e. LMod /\ X e. V ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 18 |
|
simpr |
|- ( ( W e. LMod /\ X e. V ) -> X e. V ) |
| 19 |
4 13 1 5 3
|
lspsnvsi |
|- ( ( W e. LMod /\ ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ X e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) } ) C_ ( N ` { X } ) ) |
| 20 |
11 17 18 19
|
syl3anc |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) X ) } ) C_ ( N ` { X } ) ) |
| 21 |
10 20
|
eqsstrrd |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( M ` X ) } ) C_ ( N ` { X } ) ) |
| 22 |
1 2
|
lmodvnegcl |
|- ( ( W e. LMod /\ X e. V ) -> ( M ` X ) e. V ) |
| 23 |
1 2 4 5 6 7
|
lmodvneg1 |
|- ( ( W e. LMod /\ ( M ` X ) e. V ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) = ( M ` ( M ` X ) ) ) |
| 24 |
22 23
|
syldan |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) = ( M ` ( M ` X ) ) ) |
| 25 |
|
lmodgrp |
|- ( W e. LMod -> W e. Grp ) |
| 26 |
1 2
|
grpinvinv |
|- ( ( W e. Grp /\ X e. V ) -> ( M ` ( M ` X ) ) = X ) |
| 27 |
25 26
|
sylan |
|- ( ( W e. LMod /\ X e. V ) -> ( M ` ( M ` X ) ) = X ) |
| 28 |
24 27
|
eqtrd |
|- ( ( W e. LMod /\ X e. V ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) = X ) |
| 29 |
28
|
sneqd |
|- ( ( W e. LMod /\ X e. V ) -> { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) } = { X } ) |
| 30 |
29
|
fveq2d |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) } ) = ( N ` { X } ) ) |
| 31 |
4 13 1 5 3
|
lspsnvsi |
|- ( ( W e. LMod /\ ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) /\ ( M ` X ) e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) } ) C_ ( N ` { ( M ` X ) } ) ) |
| 32 |
11 17 22 31
|
syl3anc |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) ( M ` X ) ) } ) C_ ( N ` { ( M ` X ) } ) ) |
| 33 |
30 32
|
eqsstrrd |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) C_ ( N ` { ( M ` X ) } ) ) |
| 34 |
21 33
|
eqssd |
|- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( M ` X ) } ) = ( N ` { X } ) ) |