Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh.q |
|- Q = ( 0g ` C ) |
2 |
|
mapdh.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
3 |
|
mapdh.h |
|- H = ( LHyp ` K ) |
4 |
|
mapdh.m |
|- M = ( ( mapd ` K ) ` W ) |
5 |
|
mapdh.u |
|- U = ( ( DVecH ` K ) ` W ) |
6 |
|
mapdh.v |
|- V = ( Base ` U ) |
7 |
|
mapdh.s |
|- .- = ( -g ` U ) |
8 |
|
mapdhc.o |
|- .0. = ( 0g ` U ) |
9 |
|
mapdh.n |
|- N = ( LSpan ` U ) |
10 |
|
mapdh.c |
|- C = ( ( LCDual ` K ) ` W ) |
11 |
|
mapdh.d |
|- D = ( Base ` C ) |
12 |
|
mapdh.r |
|- R = ( -g ` C ) |
13 |
|
mapdh.j |
|- J = ( LSpan ` C ) |
14 |
|
mapdh.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
15 |
|
mapdhc.f |
|- ( ph -> F e. D ) |
16 |
|
mapdh.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
17 |
|
mapdhcl.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
18 |
|
mapdhe.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
19 |
|
mapdhe.g |
|- ( ph -> G e. D ) |
20 |
|
mapdh.ne2 |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
|
mapdheq |
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) ) |
22 |
16
|
adantr |
|- ( ( ph /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
23 |
3 5 14
|
dvhlmod |
|- ( ph -> U e. LMod ) |
24 |
17
|
eldifad |
|- ( ph -> X e. V ) |
25 |
18
|
eldifad |
|- ( ph -> Y e. V ) |
26 |
6 7 9 23 24 25
|
lspsnsub |
|- ( ph -> ( N ` { ( X .- Y ) } ) = ( N ` { ( Y .- X ) } ) ) |
27 |
26
|
fveq2d |
|- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( M ` ( N ` { ( Y .- X ) } ) ) ) |
28 |
3 10 14
|
lcdlmod |
|- ( ph -> C e. LMod ) |
29 |
11 12 13 28 15 19
|
lspsnsub |
|- ( ph -> ( J ` { ( F R G ) } ) = ( J ` { ( G R F ) } ) ) |
30 |
27 29
|
eqeq12d |
|- ( ph -> ( ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) <-> ( M ` ( N ` { ( Y .- X ) } ) ) = ( J ` { ( G R F ) } ) ) ) |
31 |
30
|
biimpa |
|- ( ( ph /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) -> ( M ` ( N ` { ( Y .- X ) } ) ) = ( J ` { ( G R F ) } ) ) |
32 |
31
|
adantrl |
|- ( ( ph /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) -> ( M ` ( N ` { ( Y .- X ) } ) ) = ( J ` { ( G R F ) } ) ) |
33 |
14
|
adantr |
|- ( ( ph /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) -> ( K e. HL /\ W e. H ) ) |
34 |
19
|
adantr |
|- ( ( ph /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) -> G e. D ) |
35 |
|
simprl |
|- ( ( ph /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) -> ( M ` ( N ` { Y } ) ) = ( J ` { G } ) ) |
36 |
18
|
adantr |
|- ( ( ph /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) -> Y e. ( V \ { .0. } ) ) |
37 |
17
|
adantr |
|- ( ( ph /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) -> X e. ( V \ { .0. } ) ) |
38 |
15
|
adantr |
|- ( ( ph /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) -> F e. D ) |
39 |
20
|
necomd |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { X } ) ) |
40 |
39
|
adantr |
|- ( ( ph /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) -> ( N ` { Y } ) =/= ( N ` { X } ) ) |
41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 33 34 35 36 37 38 40
|
mapdheq |
|- ( ( ph /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) -> ( ( I ` <. Y , G , X >. ) = F <-> ( ( M ` ( N ` { X } ) ) = ( J ` { F } ) /\ ( M ` ( N ` { ( Y .- X ) } ) ) = ( J ` { ( G R F ) } ) ) ) ) |
42 |
22 32 41
|
mpbir2and |
|- ( ( ph /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) ) -> ( I ` <. Y , G , X >. ) = F ) |
43 |
42
|
ex |
|- ( ph -> ( ( ( M ` ( N ` { Y } ) ) = ( J ` { G } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R G ) } ) ) -> ( I ` <. Y , G , X >. ) = F ) ) |
44 |
21 43
|
sylbid |
|- ( ph -> ( ( I ` <. X , F , Y >. ) = G -> ( I ` <. Y , G , X >. ) = F ) ) |