Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
mapdhval2
Next ⟩
mapdhcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
mapdhval2
Description:
Lemmma for ~? mapdh .
(Contributed by
NM
, 3-Apr-2015)
Ref
Expression
Hypotheses
mapdh.q
⊢
Q
=
0
C
mapdh.i
⊢
I
=
x
∈
V
⟼
if
2
nd
⁡
x
=
0
˙
Q
ι
h
∈
D
|
M
⁡
N
⁡
2
nd
⁡
x
=
J
⁡
h
∧
M
⁡
N
⁡
1
st
⁡
1
st
⁡
x
-
˙
2
nd
⁡
x
=
J
⁡
2
nd
⁡
1
st
⁡
x
R
h
mapdh2.x
⊢
φ
→
X
∈
A
mapdh2.f
⊢
φ
→
F
∈
B
mapdh2.y
⊢
φ
→
Y
∈
V
∖
0
˙
Assertion
mapdhval2
⊢
φ
→
I
⁡
X
F
Y
=
ι
h
∈
D
|
M
⁡
N
⁡
Y
=
J
⁡
h
∧
M
⁡
N
⁡
X
-
˙
Y
=
J
⁡
F
R
h
Proof
Step
Hyp
Ref
Expression
1
mapdh.q
⊢
Q
=
0
C
2
mapdh.i
⊢
I
=
x
∈
V
⟼
if
2
nd
⁡
x
=
0
˙
Q
ι
h
∈
D
|
M
⁡
N
⁡
2
nd
⁡
x
=
J
⁡
h
∧
M
⁡
N
⁡
1
st
⁡
1
st
⁡
x
-
˙
2
nd
⁡
x
=
J
⁡
2
nd
⁡
1
st
⁡
x
R
h
3
mapdh2.x
⊢
φ
→
X
∈
A
4
mapdh2.f
⊢
φ
→
F
∈
B
5
mapdh2.y
⊢
φ
→
Y
∈
V
∖
0
˙
6
1
2
3
4
5
mapdhval
⊢
φ
→
I
⁡
X
F
Y
=
if
Y
=
0
˙
Q
ι
h
∈
D
|
M
⁡
N
⁡
Y
=
J
⁡
h
∧
M
⁡
N
⁡
X
-
˙
Y
=
J
⁡
F
R
h
7
eldifsni
⊢
Y
∈
V
∖
0
˙
→
Y
≠
0
˙
8
7
neneqd
⊢
Y
∈
V
∖
0
˙
→
¬
Y
=
0
˙
9
iffalse
⊢
¬
Y
=
0
˙
→
if
Y
=
0
˙
Q
ι
h
∈
D
|
M
⁡
N
⁡
Y
=
J
⁡
h
∧
M
⁡
N
⁡
X
-
˙
Y
=
J
⁡
F
R
h
=
ι
h
∈
D
|
M
⁡
N
⁡
Y
=
J
⁡
h
∧
M
⁡
N
⁡
X
-
˙
Y
=
J
⁡
F
R
h
10
5
8
9
3syl
⊢
φ
→
if
Y
=
0
˙
Q
ι
h
∈
D
|
M
⁡
N
⁡
Y
=
J
⁡
h
∧
M
⁡
N
⁡
X
-
˙
Y
=
J
⁡
F
R
h
=
ι
h
∈
D
|
M
⁡
N
⁡
Y
=
J
⁡
h
∧
M
⁡
N
⁡
X
-
˙
Y
=
J
⁡
F
R
h
11
6
10
eqtrd
⊢
φ
→
I
⁡
X
F
Y
=
ι
h
∈
D
|
M
⁡
N
⁡
Y
=
J
⁡
h
∧
M
⁡
N
⁡
X
-
˙
Y
=
J
⁡
F
R
h