Metamath Proof Explorer


Theorem mapdhcl

Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdhc.y φYV
mapdh.ne φNXNY
Assertion mapdhcl φIXFYD

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdhc.y φYV
19 mapdh.ne φNXNY
20 oteq3 Y=0˙XFY=XF0˙
21 20 fveq2d Y=0˙IXFY=IXF0˙
22 21 eleq1d Y=0˙IXFYDIXF0˙D
23 17 adantr φY0˙XV0˙
24 15 adantr φY0˙FD
25 18 anim1i φY0˙YVY0˙
26 eldifsn YV0˙YVY0˙
27 25 26 sylibr φY0˙YV0˙
28 1 2 23 24 27 mapdhval2 φY0˙IXFY=ιhD|MNY=JhMNX-˙Y=JFRh
29 14 adantr φY0˙KHLWH
30 19 adantr φY0˙NXNY
31 16 adantr φY0˙MNX=JF
32 3 4 5 6 7 8 9 10 11 12 13 29 23 27 24 30 31 mapdpg φY0˙∃!hDMNY=JhMNX-˙Y=JFRh
33 riotacl ∃!hDMNY=JhMNX-˙Y=JFRhιhD|MNY=JhMNX-˙Y=JFRhD
34 32 33 syl φY0˙ιhD|MNY=JhMNX-˙Y=JFRhD
35 28 34 eqeltrd φY0˙IXFYD
36 1 2 8 17 15 mapdhval0 φIXF0˙=Q
37 3 10 11 1 14 lcd0vcl φQD
38 36 37 eqeltrd φIXF0˙D
39 22 35 38 pm2.61ne φIXFYD