| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdh.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
| 2 |
|
mapdh.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
| 3 |
|
mapdh.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
mapdh.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
mapdh.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
mapdh.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 7 |
|
mapdh.s |
⊢ − = ( -g ‘ 𝑈 ) |
| 8 |
|
mapdhc.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 9 |
|
mapdh.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 10 |
|
mapdh.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
|
mapdh.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 12 |
|
mapdh.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
| 13 |
|
mapdh.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
| 14 |
|
mapdh.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 15 |
|
mapdhc.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 16 |
|
mapdh.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 17 |
|
mapdhcl.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 18 |
|
mapdhc.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 19 |
|
mapdh.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 20 |
|
oteq3 |
⊢ ( 𝑌 = 0 → 〈 𝑋 , 𝐹 , 𝑌 〉 = 〈 𝑋 , 𝐹 , 0 〉 ) |
| 21 |
20
|
fveq2d |
⊢ ( 𝑌 = 0 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) ) |
| 22 |
21
|
eleq1d |
⊢ ( 𝑌 = 0 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ∈ 𝐷 ↔ ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) ∈ 𝐷 ) ) |
| 23 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 24 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 0 ) → 𝐹 ∈ 𝐷 ) |
| 25 |
18
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 0 ) → ( 𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 ) ) |
| 26 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑌 ∈ 𝑉 ∧ 𝑌 ≠ 0 ) ) |
| 27 |
25 26
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 0 ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 28 |
1 2 23 24 27
|
mapdhval2 |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) |
| 29 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 0 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 30 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 0 ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 31 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 0 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 32 |
3 4 5 6 7 8 9 10 11 12 13 29 23 27 24 30 31
|
mapdpg |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 0 ) → ∃! ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) |
| 33 |
|
riotacl |
⊢ ( ∃! ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) → ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ∈ 𝐷 ) |
| 34 |
32 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 0 ) → ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ∈ 𝐷 ) |
| 35 |
28 34
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑌 ≠ 0 ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ∈ 𝐷 ) |
| 36 |
1 2 8 17 15
|
mapdhval0 |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) = 𝑄 ) |
| 37 |
3 10 11 1 14
|
lcd0vcl |
⊢ ( 𝜑 → 𝑄 ∈ 𝐷 ) |
| 38 |
36 37
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) ∈ 𝐷 ) |
| 39 |
22 35 38
|
pm2.61ne |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ∈ 𝐷 ) |