Metamath Proof Explorer


Theorem mapdhval0

Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015)

Ref Expression
Hypotheses mapdh.q 𝑄 = ( 0g𝐶 )
mapdh.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh0.o 0 = ( 0g𝑈 )
mapdh0.x ( 𝜑𝑋𝐴 )
mapdh0.f ( 𝜑𝐹𝐵 )
Assertion mapdhval0 ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 0 ⟩ ) = 𝑄 )

Proof

Step Hyp Ref Expression
1 mapdh.q 𝑄 = ( 0g𝐶 )
2 mapdh.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
3 mapdh0.o 0 = ( 0g𝑈 )
4 mapdh0.x ( 𝜑𝑋𝐴 )
5 mapdh0.f ( 𝜑𝐹𝐵 )
6 3 fvexi 0 ∈ V
7 6 a1i ( 𝜑0 ∈ V )
8 1 2 4 5 7 mapdhval ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 0 ⟩ ) = if ( 0 = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 0 } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 0 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ) } ) ) ) ) )
9 eqid 0 = 0
10 9 iftruei if ( 0 = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 0 } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 0 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ) } ) ) ) ) = 𝑄
11 8 10 eqtrdi ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 0 ⟩ ) = 𝑄 )