Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
2 |
|
mapdh.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
3 |
|
mapdh0.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
4 |
|
mapdh0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
5 |
|
mapdh0.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
6 |
3
|
fvexi |
⊢ 0 ∈ V |
7 |
6
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
8 |
1 2 4 5 7
|
mapdhval |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) = if ( 0 = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 0 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 0 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) ) |
9 |
|
eqid |
⊢ 0 = 0 |
10 |
9
|
iftruei |
⊢ if ( 0 = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 0 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 0 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) = 𝑄 |
11 |
8 10
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 0 〉 ) = 𝑄 ) |