Metamath Proof Explorer


Theorem mapdhval0

Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015)

Ref Expression
Hypotheses mapdh.q
|- Q = ( 0g ` C )
mapdh.i
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
mapdh0.o
|- .0. = ( 0g ` U )
mapdh0.x
|- ( ph -> X e. A )
mapdh0.f
|- ( ph -> F e. B )
Assertion mapdhval0
|- ( ph -> ( I ` <. X , F , .0. >. ) = Q )

Proof

Step Hyp Ref Expression
1 mapdh.q
 |-  Q = ( 0g ` C )
2 mapdh.i
 |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
3 mapdh0.o
 |-  .0. = ( 0g ` U )
4 mapdh0.x
 |-  ( ph -> X e. A )
5 mapdh0.f
 |-  ( ph -> F e. B )
6 3 fvexi
 |-  .0. e. _V
7 6 a1i
 |-  ( ph -> .0. e. _V )
8 1 2 4 5 7 mapdhval
 |-  ( ph -> ( I ` <. X , F , .0. >. ) = if ( .0. = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { .0. } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- .0. ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) )
9 eqid
 |-  .0. = .0.
10 9 iftruei
 |-  if ( .0. = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { .0. } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- .0. ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) = Q
11 8 10 eqtrdi
 |-  ( ph -> ( I ` <. X , F , .0. >. ) = Q )