| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdh.q |  |-  Q = ( 0g ` C ) | 
						
							| 2 |  | mapdh.i |  |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) | 
						
							| 3 |  | mapdh2.x |  |-  ( ph -> X e. A ) | 
						
							| 4 |  | mapdh2.f |  |-  ( ph -> F e. B ) | 
						
							| 5 |  | mapdh2.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 6 | 1 2 3 4 5 | mapdhval |  |-  ( ph -> ( I ` <. X , F , Y >. ) = if ( Y = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) ) | 
						
							| 7 |  | eldifsni |  |-  ( Y e. ( V \ { .0. } ) -> Y =/= .0. ) | 
						
							| 8 | 7 | neneqd |  |-  ( Y e. ( V \ { .0. } ) -> -. Y = .0. ) | 
						
							| 9 |  | iffalse |  |-  ( -. Y = .0. -> if ( Y = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) | 
						
							| 10 | 5 8 9 | 3syl |  |-  ( ph -> if ( Y = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) | 
						
							| 11 | 6 10 | eqtrd |  |-  ( ph -> ( I ` <. X , F , Y >. ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) |