Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh.q |
|- Q = ( 0g ` C ) |
2 |
|
mapdh.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
3 |
|
mapdh.x |
|- ( ph -> X e. A ) |
4 |
|
mapdh.f |
|- ( ph -> F e. B ) |
5 |
|
mapdh.y |
|- ( ph -> Y e. E ) |
6 |
|
otex |
|- <. X , F , Y >. e. _V |
7 |
|
fveq2 |
|- ( x = <. X , F , Y >. -> ( 2nd ` x ) = ( 2nd ` <. X , F , Y >. ) ) |
8 |
7
|
eqeq1d |
|- ( x = <. X , F , Y >. -> ( ( 2nd ` x ) = .0. <-> ( 2nd ` <. X , F , Y >. ) = .0. ) ) |
9 |
7
|
sneqd |
|- ( x = <. X , F , Y >. -> { ( 2nd ` x ) } = { ( 2nd ` <. X , F , Y >. ) } ) |
10 |
9
|
fveq2d |
|- ( x = <. X , F , Y >. -> ( N ` { ( 2nd ` x ) } ) = ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) |
11 |
10
|
fveqeq2d |
|- ( x = <. X , F , Y >. -> ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) <-> ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) ) ) |
12 |
|
fveq2 |
|- ( x = <. X , F , Y >. -> ( 1st ` x ) = ( 1st ` <. X , F , Y >. ) ) |
13 |
12
|
fveq2d |
|- ( x = <. X , F , Y >. -> ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` <. X , F , Y >. ) ) ) |
14 |
13 7
|
oveq12d |
|- ( x = <. X , F , Y >. -> ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) = ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) ) |
15 |
14
|
sneqd |
|- ( x = <. X , F , Y >. -> { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } = { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) |
16 |
15
|
fveq2d |
|- ( x = <. X , F , Y >. -> ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) = ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) |
17 |
16
|
fveq2d |
|- ( x = <. X , F , Y >. -> ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) ) |
18 |
12
|
fveq2d |
|- ( x = <. X , F , Y >. -> ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` <. X , F , Y >. ) ) ) |
19 |
18
|
oveq1d |
|- ( x = <. X , F , Y >. -> ( ( 2nd ` ( 1st ` x ) ) R h ) = ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) ) |
20 |
19
|
sneqd |
|- ( x = <. X , F , Y >. -> { ( ( 2nd ` ( 1st ` x ) ) R h ) } = { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) |
21 |
20
|
fveq2d |
|- ( x = <. X , F , Y >. -> ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) |
22 |
17 21
|
eqeq12d |
|- ( x = <. X , F , Y >. -> ( ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) <-> ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) |
23 |
11 22
|
anbi12d |
|- ( x = <. X , F , Y >. -> ( ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) <-> ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) ) |
24 |
23
|
riotabidv |
|- ( x = <. X , F , Y >. -> ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) ) |
25 |
8 24
|
ifbieq2d |
|- ( x = <. X , F , Y >. -> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) = if ( ( 2nd ` <. X , F , Y >. ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) ) ) |
26 |
1
|
fvexi |
|- Q e. _V |
27 |
|
riotaex |
|- ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) e. _V |
28 |
26 27
|
ifex |
|- if ( ( 2nd ` <. X , F , Y >. ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) ) e. _V |
29 |
25 2 28
|
fvmpt |
|- ( <. X , F , Y >. e. _V -> ( I ` <. X , F , Y >. ) = if ( ( 2nd ` <. X , F , Y >. ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) ) ) |
30 |
6 29
|
mp1i |
|- ( ph -> ( I ` <. X , F , Y >. ) = if ( ( 2nd ` <. X , F , Y >. ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) ) ) |
31 |
|
ot3rdg |
|- ( Y e. E -> ( 2nd ` <. X , F , Y >. ) = Y ) |
32 |
5 31
|
syl |
|- ( ph -> ( 2nd ` <. X , F , Y >. ) = Y ) |
33 |
32
|
eqeq1d |
|- ( ph -> ( ( 2nd ` <. X , F , Y >. ) = .0. <-> Y = .0. ) ) |
34 |
32
|
sneqd |
|- ( ph -> { ( 2nd ` <. X , F , Y >. ) } = { Y } ) |
35 |
34
|
fveq2d |
|- ( ph -> ( N ` { ( 2nd ` <. X , F , Y >. ) } ) = ( N ` { Y } ) ) |
36 |
35
|
fveqeq2d |
|- ( ph -> ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) <-> ( M ` ( N ` { Y } ) ) = ( J ` { h } ) ) ) |
37 |
|
ot1stg |
|- ( ( X e. A /\ F e. B /\ Y e. E ) -> ( 1st ` ( 1st ` <. X , F , Y >. ) ) = X ) |
38 |
3 4 5 37
|
syl3anc |
|- ( ph -> ( 1st ` ( 1st ` <. X , F , Y >. ) ) = X ) |
39 |
38 32
|
oveq12d |
|- ( ph -> ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) = ( X .- Y ) ) |
40 |
39
|
sneqd |
|- ( ph -> { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } = { ( X .- Y ) } ) |
41 |
40
|
fveq2d |
|- ( ph -> ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) = ( N ` { ( X .- Y ) } ) ) |
42 |
41
|
fveq2d |
|- ( ph -> ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( M ` ( N ` { ( X .- Y ) } ) ) ) |
43 |
|
ot2ndg |
|- ( ( X e. A /\ F e. B /\ Y e. E ) -> ( 2nd ` ( 1st ` <. X , F , Y >. ) ) = F ) |
44 |
3 4 5 43
|
syl3anc |
|- ( ph -> ( 2nd ` ( 1st ` <. X , F , Y >. ) ) = F ) |
45 |
44
|
oveq1d |
|- ( ph -> ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) = ( F R h ) ) |
46 |
45
|
sneqd |
|- ( ph -> { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } = { ( F R h ) } ) |
47 |
46
|
fveq2d |
|- ( ph -> ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) = ( J ` { ( F R h ) } ) ) |
48 |
42 47
|
eqeq12d |
|- ( ph -> ( ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) <-> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) |
49 |
36 48
|
anbi12d |
|- ( ph -> ( ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) |
50 |
49
|
riotabidv |
|- ( ph -> ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) = ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) |
51 |
33 50
|
ifbieq2d |
|- ( ph -> if ( ( 2nd ` <. X , F , Y >. ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` <. X , F , Y >. ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` <. X , F , Y >. ) ) .- ( 2nd ` <. X , F , Y >. ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` <. X , F , Y >. ) ) R h ) } ) ) ) ) = if ( Y = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) ) |
52 |
30 51
|
eqtrd |
|- ( ph -> ( I ` <. X , F , Y >. ) = if ( Y = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( F R h ) } ) ) ) ) ) |