Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
2 |
|
mapdh.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
3 |
|
mapdh.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
4 |
|
mapdh.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
5 |
|
mapdh.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐸 ) |
6 |
|
otex |
⊢ 〈 𝑋 , 𝐹 , 𝑌 〉 ∈ V |
7 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( ( 2nd ‘ 𝑥 ) = 0 ↔ ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 0 ) ) |
9 |
7
|
sneqd |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → { ( 2nd ‘ 𝑥 ) } = { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) |
10 |
9
|
fveq2d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) = ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) |
11 |
10
|
fveqeq2d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( 1st ‘ ( 1st ‘ 𝑥 ) ) = ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) ) |
14 |
13 7
|
oveq12d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) = ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) ) |
15 |
14
|
sneqd |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } = { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) |
16 |
15
|
fveq2d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) = ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) ) |
18 |
12
|
fveq2d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( 2nd ‘ ( 1st ‘ 𝑥 ) ) = ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) = ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) ) |
20 |
19
|
sneqd |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } = { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) |
21 |
20
|
fveq2d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) |
22 |
17 21
|
eqeq12d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) |
23 |
11 22
|
anbi12d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) ) |
24 |
23
|
riotabidv |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) = ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) ) |
25 |
8 24
|
ifbieq2d |
⊢ ( 𝑥 = 〈 𝑋 , 𝐹 , 𝑌 〉 → if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) = if ( ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
26 |
1
|
fvexi |
⊢ 𝑄 ∈ V |
27 |
|
riotaex |
⊢ ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) ∈ V |
28 |
26 27
|
ifex |
⊢ if ( ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) ) ∈ V |
29 |
25 2 28
|
fvmpt |
⊢ ( 〈 𝑋 , 𝐹 , 𝑌 〉 ∈ V → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = if ( ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
30 |
6 29
|
mp1i |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = if ( ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
31 |
|
ot3rdg |
⊢ ( 𝑌 ∈ 𝐸 → ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝑌 ) |
32 |
5 31
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝑌 ) |
33 |
32
|
eqeq1d |
⊢ ( 𝜑 → ( ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 0 ↔ 𝑌 = 0 ) ) |
34 |
32
|
sneqd |
⊢ ( 𝜑 → { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } = { 𝑌 } ) |
35 |
34
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
36 |
35
|
fveqeq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ) ) |
37 |
|
ot1stg |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐹 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸 ) → ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) = 𝑋 ) |
38 |
3 4 5 37
|
syl3anc |
⊢ ( 𝜑 → ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) = 𝑋 ) |
39 |
38 32
|
oveq12d |
⊢ ( 𝜑 → ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) = ( 𝑋 − 𝑌 ) ) |
40 |
39
|
sneqd |
⊢ ( 𝜑 → { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } = { ( 𝑋 − 𝑌 ) } ) |
41 |
40
|
fveq2d |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) = ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) |
42 |
41
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) ) |
43 |
|
ot2ndg |
⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐹 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸 ) → ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) = 𝐹 ) |
44 |
3 4 5 43
|
syl3anc |
⊢ ( 𝜑 → ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) = 𝐹 ) |
45 |
44
|
oveq1d |
⊢ ( 𝜑 → ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) = ( 𝐹 𝑅 ℎ ) ) |
46 |
45
|
sneqd |
⊢ ( 𝜑 → { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } = { ( 𝐹 𝑅 ℎ ) } ) |
47 |
46
|
fveq2d |
⊢ ( 𝜑 → ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) |
48 |
42 47
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) |
49 |
36 48
|
anbi12d |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) |
50 |
49
|
riotabidv |
⊢ ( 𝜑 → ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) = ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) |
51 |
33 50
|
ifbieq2d |
⊢ ( 𝜑 → if ( ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) − ( 2nd ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ) 𝑅 ℎ ) } ) ) ) ) = if ( 𝑌 = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) ) |
52 |
30 51
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = if ( 𝑌 = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 ℎ ) } ) ) ) ) ) |