Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpg.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdpg.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdpg.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdpg.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
mapdpg.s |
⊢ − = ( -g ‘ 𝑈 ) |
6 |
|
mapdpg.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
mapdpg.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
mapdpg.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
mapdpg.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
10 |
|
mapdpg.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
11 |
|
mapdpg.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
mapdpg.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
mapdpg.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
14 |
|
mapdpg.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
15 |
|
mapdpg.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
16 |
|
mapdpg.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
17 |
|
mapdpg.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
mapdpglem24 |
⊢ ( 𝜑 → ∃ ℎ ∈ 𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
mapdpglem32 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ℎ = 𝑖 ) |
20 |
19
|
3exp |
⊢ ( 𝜑 → ( ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) → ( ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) → ℎ = 𝑖 ) ) ) |
21 |
20
|
ralrimivv |
⊢ ( 𝜑 → ∀ ℎ ∈ 𝐹 ∀ 𝑖 ∈ 𝐹 ( ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) → ℎ = 𝑖 ) ) |
22 |
|
sneq |
⊢ ( ℎ = 𝑖 → { ℎ } = { 𝑖 } ) |
23 |
22
|
fveq2d |
⊢ ( ℎ = 𝑖 → ( 𝐽 ‘ { ℎ } ) = ( 𝐽 ‘ { 𝑖 } ) ) |
24 |
23
|
eqeq2d |
⊢ ( ℎ = 𝑖 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ) ) |
25 |
|
oveq2 |
⊢ ( ℎ = 𝑖 → ( 𝐺 𝑅 ℎ ) = ( 𝐺 𝑅 𝑖 ) ) |
26 |
25
|
sneqd |
⊢ ( ℎ = 𝑖 → { ( 𝐺 𝑅 ℎ ) } = { ( 𝐺 𝑅 𝑖 ) } ) |
27 |
26
|
fveq2d |
⊢ ( ℎ = 𝑖 → ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) |
28 |
27
|
eqeq2d |
⊢ ( ℎ = 𝑖 → ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ↔ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) |
29 |
24 28
|
anbi12d |
⊢ ( ℎ = 𝑖 → ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) |
30 |
29
|
reu4 |
⊢ ( ∃! ℎ ∈ 𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ↔ ( ∃ ℎ ∈ 𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ∀ ℎ ∈ 𝐹 ∀ 𝑖 ∈ 𝐹 ( ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) → ℎ = 𝑖 ) ) ) |
31 |
18 21 30
|
sylanbrc |
⊢ ( 𝜑 → ∃! ℎ ∈ 𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) |