| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpg.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdpg.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdpg.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdpg.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | mapdpg.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 6 |  | mapdpg.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 7 |  | mapdpg.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | mapdpg.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | mapdpg.f | ⊢ 𝐹  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | mapdpg.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 11 |  | mapdpg.j | ⊢ 𝐽  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | mapdpg.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | mapdpg.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 14 |  | mapdpg.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 15 |  | mapdpg.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 16 |  | mapdpg.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 17 |  | mapdpg.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 18 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 19 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 20 | 14 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 21 | 15 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  𝐺  ∈  𝐹 ) | 
						
							| 22 | 16 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 23 | 17 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 24 |  | simp2l | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ℎ  ∈  𝐹 ) | 
						
							| 25 |  | simp3l | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) | 
						
							| 26 | 24 25 | jca | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ( ℎ  ∈  𝐹  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) | 
						
							| 27 |  | simp2r | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  𝑖  ∈  𝐹 ) | 
						
							| 28 |  | simp3r | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) | 
						
							| 29 | 27 28 | jca | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ( 𝑖  ∈  𝐹  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) | 
						
							| 30 |  | eqid | ⊢ ( Scalar ‘ 𝑈 )  =  ( Scalar ‘ 𝑈 ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) )  =  ( Base ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 32 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐶 )  =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 33 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 29 30 31 32 33 | mapdpglem26 | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ∃ 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 ) ) | 
						
							| 35 | 1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 29 30 31 32 33 | mapdpglem27 | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ∃ 𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) | 
						
							| 36 |  | reeanv | ⊢ ( ∃ 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∃ 𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) )  ↔  ( ∃ 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ∃ 𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) | 
						
							| 37 | 34 35 36 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ∃ 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∃ 𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) | 
						
							| 38 | 18 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 39 | 19 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 40 | 20 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 41 | 21 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  𝐺  ∈  𝐹 ) | 
						
							| 42 | 22 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 43 | 23 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 44 |  | simp12l | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  ℎ  ∈  𝐹 ) | 
						
							| 45 |  | simp13l | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) | 
						
							| 46 | 44 45 | jca | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  ( ℎ  ∈  𝐹  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) | 
						
							| 47 |  | simp12r | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  𝑖  ∈  𝐹 ) | 
						
							| 48 |  | simp13r | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) | 
						
							| 49 | 47 48 | jca | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  ( 𝑖  ∈  𝐹  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) | 
						
							| 50 |  | eldifi | ⊢ ( 𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  →  𝑣  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  →  𝑣  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 52 | 51 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  𝑣  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 53 |  | simp3l | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 ) ) | 
						
							| 54 |  | simp3r | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) | 
						
							| 55 |  | eldifi | ⊢ ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  →  𝑢  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  →  𝑢  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 57 | 56 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  𝑢  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 58 | 1 2 3 4 5 6 7 8 9 10 11 38 39 40 41 42 43 46 49 30 31 32 33 52 53 54 57 | mapdpglem31 | ⊢ ( ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  ∧  ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  ∧  ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) )  →  ℎ  =  𝑖 ) | 
						
							| 59 | 58 | 3exp | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ( ( 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ∧  𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  →  ( ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) )  →  ℎ  =  𝑖 ) ) ) | 
						
							| 60 | 59 | rexlimdvv | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ( ∃ 𝑢  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∃ 𝑣  ∈  ( ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∖  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ( ℎ  =  ( 𝑢 (  ·𝑠  ‘ 𝐶 ) 𝑖 )  ∧  ( 𝐺 𝑅 ℎ )  =  ( 𝑣 (  ·𝑠  ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) )  →  ℎ  =  𝑖 ) ) | 
						
							| 61 | 37 60 | mpd | ⊢ ( ( 𝜑  ∧  ( ℎ  ∈  𝐹  ∧  𝑖  ∈  𝐹 )  ∧  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )  →  ℎ  =  𝑖 ) |