Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpg.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdpg.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdpg.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdpg.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
mapdpg.s |
⊢ − = ( -g ‘ 𝑈 ) |
6 |
|
mapdpg.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
mapdpg.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
mapdpg.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
mapdpg.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
10 |
|
mapdpg.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
11 |
|
mapdpg.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
mapdpg.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
mapdpg.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
14 |
|
mapdpg.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
15 |
|
mapdpg.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
16 |
|
mapdpg.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
17 |
|
mapdpg.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
18 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
20 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
21 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → 𝐺 ∈ 𝐹 ) |
22 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
23 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
24 |
|
simp2l |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ℎ ∈ 𝐹 ) |
25 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) |
26 |
24 25
|
jca |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ( ℎ ∈ 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) |
27 |
|
simp2r |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → 𝑖 ∈ 𝐹 ) |
28 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) |
29 |
27 28
|
jca |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ( 𝑖 ∈ 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) |
30 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
31 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
32 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐶 ) = ( ·𝑠 ‘ 𝐶 ) |
33 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) |
34 |
1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 29 30 31 32 33
|
mapdpglem26 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ∃ 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
35 |
1 2 3 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 29 30 31 32 33
|
mapdpglem27 |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) |
36 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ↔ ( ∃ 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) |
37 |
34 35 36
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ∃ 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) |
38 |
18
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
39 |
19
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
40 |
20
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
41 |
21
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → 𝐺 ∈ 𝐹 ) |
42 |
22
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
43 |
23
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
44 |
|
simp12l |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → ℎ ∈ 𝐹 ) |
45 |
|
simp13l |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) |
46 |
44 45
|
jca |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → ( ℎ ∈ 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) |
47 |
|
simp12r |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → 𝑖 ∈ 𝐹 ) |
48 |
|
simp13r |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) |
49 |
47 48
|
jca |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → ( 𝑖 ∈ 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) |
50 |
|
eldifi |
⊢ ( 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) → 𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
51 |
50
|
adantl |
⊢ ( ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) → 𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
52 |
51
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → 𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
53 |
|
simp3l |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ) |
54 |
|
simp3r |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) |
55 |
|
eldifi |
⊢ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) → 𝑢 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) → 𝑢 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
57 |
56
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → 𝑢 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
58 |
1 2 3 4 5 6 7 8 9 10 11 38 39 40 41 42 43 46 49 30 31 32 33 52 53 54 57
|
mapdpglem31 |
⊢ ( ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) ∧ ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ∧ ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) ) → ℎ = 𝑖 ) |
59 |
58
|
3exp |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ( ( 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∧ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) → ( ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) → ℎ = 𝑖 ) ) ) |
60 |
59
|
rexlimdvv |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ( ∃ 𝑢 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ∃ 𝑣 ∈ ( ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∖ { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ( ℎ = ( 𝑢 ( ·𝑠 ‘ 𝐶 ) 𝑖 ) ∧ ( 𝐺 𝑅 ℎ ) = ( 𝑣 ( ·𝑠 ‘ 𝐶 ) ( 𝐺 𝑅 𝑖 ) ) ) → ℎ = 𝑖 ) ) |
61 |
37 60
|
mpd |
⊢ ( ( 𝜑 ∧ ( ℎ ∈ 𝐹 ∧ 𝑖 ∈ 𝐹 ) ∧ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) → ℎ = 𝑖 ) |