| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpg.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdpg.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdpg.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdpg.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | mapdpg.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 6 |  | mapdpg.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 7 |  | mapdpg.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | mapdpg.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | mapdpg.f | ⊢ 𝐹  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | mapdpg.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 11 |  | mapdpg.j | ⊢ 𝐽  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | mapdpg.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | mapdpg.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 14 |  | mapdpg.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 15 |  | mapdpg.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 16 |  | mapdpg.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 17 |  | mapdpg.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 18 |  | mapdpgem25.h1 | ⊢ ( 𝜑  →  ( ℎ  ∈  𝐹  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) | 
						
							| 19 |  | mapdpgem25.i1 | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝐹  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) | 
						
							| 20 |  | mapdpglem26.a | ⊢ 𝐴  =  ( Scalar ‘ 𝑈 ) | 
						
							| 21 |  | mapdpglem26.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 22 |  | mapdpglem26.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 23 |  | mapdpglem26.o | ⊢ 𝑂  =  ( 0g ‘ 𝐴 ) | 
						
							| 24 |  | mapdpglem28.ve | ⊢ ( 𝜑  →  𝑣  ∈  𝐵 ) | 
						
							| 25 |  | mapdpglem28.u1 | ⊢ ( 𝜑  →  ℎ  =  ( 𝑢  ·  𝑖 ) ) | 
						
							| 26 |  | mapdpglem28.u2 | ⊢ ( 𝜑  →  ( 𝐺 𝑅 ℎ )  =  ( 𝑣  ·  ( 𝐺 𝑅 𝑖 ) ) ) | 
						
							| 27 |  | mapdpglem28.ue | ⊢ ( 𝜑  →  𝑢  ∈  𝐵 ) | 
						
							| 28 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 29 |  | eqid | ⊢ ( Scalar ‘ 𝐶 )  =  ( Scalar ‘ 𝐶 ) | 
						
							| 30 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝐶 ) )  =  ( 1r ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 31 | 1 3 20 28 8 29 30 12 | lcd1 | ⊢ ( 𝜑  →  ( 1r ‘ ( Scalar ‘ 𝐶 ) )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( 𝜑  →  ( ( 1r ‘ ( Scalar ‘ 𝐶 ) )  ·  𝑖 )  =  ( ( 1r ‘ 𝐴 )  ·  𝑖 ) ) | 
						
							| 33 | 1 8 12 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 34 | 19 | simpld | ⊢ ( 𝜑  →  𝑖  ∈  𝐹 ) | 
						
							| 35 | 9 29 22 30 | lmodvs1 | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝑖  ∈  𝐹 )  →  ( ( 1r ‘ ( Scalar ‘ 𝐶 ) )  ·  𝑖 )  =  𝑖 ) | 
						
							| 36 | 33 34 35 | syl2anc | ⊢ ( 𝜑  →  ( ( 1r ‘ ( Scalar ‘ 𝐶 ) )  ·  𝑖 )  =  𝑖 ) | 
						
							| 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | mapdpglem30 | ⊢ ( 𝜑  →  ( 𝑣  =  ( 1r ‘ 𝐴 )  ∧  𝑣  =  𝑢 ) ) | 
						
							| 38 |  | eqtr2 | ⊢ ( ( 𝑣  =  ( 1r ‘ 𝐴 )  ∧  𝑣  =  𝑢 )  →  ( 1r ‘ 𝐴 )  =  𝑢 ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝐴 )  =  𝑢 ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝐴 )  ·  𝑖 )  =  ( 𝑢  ·  𝑖 ) ) | 
						
							| 41 | 32 36 40 | 3eqtr3rd | ⊢ ( 𝜑  →  ( 𝑢  ·  𝑖 )  =  𝑖 ) | 
						
							| 42 | 25 41 | eqtrd | ⊢ ( 𝜑  →  ℎ  =  𝑖 ) |