Metamath Proof Explorer


Theorem mapdpglem31

Description: Lemma for mapdpg . Baer p. 45 line 19: "...and we have consequently that y' = y'', as we claimed." (Contributed by NM, 23-Mar-2015)

Ref Expression
Hypotheses mapdpg.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdpg.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.v 𝑉 = ( Base ‘ 𝑈 )
mapdpg.s = ( -g𝑈 )
mapdpg.z 0 = ( 0g𝑈 )
mapdpg.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdpg.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.f 𝐹 = ( Base ‘ 𝐶 )
mapdpg.r 𝑅 = ( -g𝐶 )
mapdpg.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdpg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdpg.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdpg.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
mapdpg.g ( 𝜑𝐺𝐹 )
mapdpg.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
mapdpg.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
mapdpgem25.h1 ( 𝜑 → ( 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ) } ) ) ) )
mapdpgem25.i1 ( 𝜑 → ( 𝑖𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )
mapdpglem26.a 𝐴 = ( Scalar ‘ 𝑈 )
mapdpglem26.b 𝐵 = ( Base ‘ 𝐴 )
mapdpglem26.t · = ( ·𝑠𝐶 )
mapdpglem26.o 𝑂 = ( 0g𝐴 )
mapdpglem28.ve ( 𝜑𝑣𝐵 )
mapdpglem28.u1 ( 𝜑 = ( 𝑢 · 𝑖 ) )
mapdpglem28.u2 ( 𝜑 → ( 𝐺 𝑅 ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) )
mapdpglem28.ue ( 𝜑𝑢𝐵 )
Assertion mapdpglem31 ( 𝜑 = 𝑖 )

Proof

Step Hyp Ref Expression
1 mapdpg.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdpg.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdpg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdpg.v 𝑉 = ( Base ‘ 𝑈 )
5 mapdpg.s = ( -g𝑈 )
6 mapdpg.z 0 = ( 0g𝑈 )
7 mapdpg.n 𝑁 = ( LSpan ‘ 𝑈 )
8 mapdpg.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
9 mapdpg.f 𝐹 = ( Base ‘ 𝐶 )
10 mapdpg.r 𝑅 = ( -g𝐶 )
11 mapdpg.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdpg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 mapdpg.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
14 mapdpg.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
15 mapdpg.g ( 𝜑𝐺𝐹 )
16 mapdpg.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
17 mapdpg.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
18 mapdpgem25.h1 ( 𝜑 → ( 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ) } ) ) ) )
19 mapdpgem25.i1 ( 𝜑 → ( 𝑖𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )
20 mapdpglem26.a 𝐴 = ( Scalar ‘ 𝑈 )
21 mapdpglem26.b 𝐵 = ( Base ‘ 𝐴 )
22 mapdpglem26.t · = ( ·𝑠𝐶 )
23 mapdpglem26.o 𝑂 = ( 0g𝐴 )
24 mapdpglem28.ve ( 𝜑𝑣𝐵 )
25 mapdpglem28.u1 ( 𝜑 = ( 𝑢 · 𝑖 ) )
26 mapdpglem28.u2 ( 𝜑 → ( 𝐺 𝑅 ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) )
27 mapdpglem28.ue ( 𝜑𝑢𝐵 )
28 eqid ( 1r𝐴 ) = ( 1r𝐴 )
29 eqid ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 )
30 eqid ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ ( Scalar ‘ 𝐶 ) )
31 1 3 20 28 8 29 30 12 lcd1 ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r𝐴 ) )
32 31 oveq1d ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝑖 ) = ( ( 1r𝐴 ) · 𝑖 ) )
33 1 8 12 lcdlmod ( 𝜑𝐶 ∈ LMod )
34 19 simpld ( 𝜑𝑖𝐹 )
35 9 29 22 30 lmodvs1 ( ( 𝐶 ∈ LMod ∧ 𝑖𝐹 ) → ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝑖 ) = 𝑖 )
36 33 34 35 syl2anc ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝑖 ) = 𝑖 )
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 mapdpglem30 ( 𝜑 → ( 𝑣 = ( 1r𝐴 ) ∧ 𝑣 = 𝑢 ) )
38 eqtr2 ( ( 𝑣 = ( 1r𝐴 ) ∧ 𝑣 = 𝑢 ) → ( 1r𝐴 ) = 𝑢 )
39 37 38 syl ( 𝜑 → ( 1r𝐴 ) = 𝑢 )
40 39 oveq1d ( 𝜑 → ( ( 1r𝐴 ) · 𝑖 ) = ( 𝑢 · 𝑖 ) )
41 32 36 40 3eqtr3rd ( 𝜑 → ( 𝑢 · 𝑖 ) = 𝑖 )
42 25 41 eqtrd ( 𝜑 = 𝑖 )