Metamath Proof Explorer


Theorem mapdpglem31

Description: Lemma for mapdpg . Baer p. 45 line 19: "...and we have consequently that y' = y'', as we claimed." (Contributed by NM, 23-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H = LHyp K
mapdpg.m M = mapd K W
mapdpg.u U = DVecH K W
mapdpg.v V = Base U
mapdpg.s - ˙ = - U
mapdpg.z 0 ˙ = 0 U
mapdpg.n N = LSpan U
mapdpg.c C = LCDual K W
mapdpg.f F = Base C
mapdpg.r R = - C
mapdpg.j J = LSpan C
mapdpg.k φ K HL W H
mapdpg.x φ X V 0 ˙
mapdpg.y φ Y V 0 ˙
mapdpg.g φ G F
mapdpg.ne φ N X N Y
mapdpg.e φ M N X = J G
mapdpgem25.h1 φ h F M N Y = J h M N X - ˙ Y = J G R h
mapdpgem25.i1 φ i F M N Y = J i M N X - ˙ Y = J G R i
mapdpglem26.a A = Scalar U
mapdpglem26.b B = Base A
mapdpglem26.t · ˙ = C
mapdpglem26.o O = 0 A
mapdpglem28.ve φ v B
mapdpglem28.u1 φ h = u · ˙ i
mapdpglem28.u2 φ G R h = v · ˙ G R i
mapdpglem28.ue φ u B
Assertion mapdpglem31 φ h = i

Proof

Step Hyp Ref Expression
1 mapdpg.h H = LHyp K
2 mapdpg.m M = mapd K W
3 mapdpg.u U = DVecH K W
4 mapdpg.v V = Base U
5 mapdpg.s - ˙ = - U
6 mapdpg.z 0 ˙ = 0 U
7 mapdpg.n N = LSpan U
8 mapdpg.c C = LCDual K W
9 mapdpg.f F = Base C
10 mapdpg.r R = - C
11 mapdpg.j J = LSpan C
12 mapdpg.k φ K HL W H
13 mapdpg.x φ X V 0 ˙
14 mapdpg.y φ Y V 0 ˙
15 mapdpg.g φ G F
16 mapdpg.ne φ N X N Y
17 mapdpg.e φ M N X = J G
18 mapdpgem25.h1 φ h F M N Y = J h M N X - ˙ Y = J G R h
19 mapdpgem25.i1 φ i F M N Y = J i M N X - ˙ Y = J G R i
20 mapdpglem26.a A = Scalar U
21 mapdpglem26.b B = Base A
22 mapdpglem26.t · ˙ = C
23 mapdpglem26.o O = 0 A
24 mapdpglem28.ve φ v B
25 mapdpglem28.u1 φ h = u · ˙ i
26 mapdpglem28.u2 φ G R h = v · ˙ G R i
27 mapdpglem28.ue φ u B
28 eqid 1 A = 1 A
29 eqid Scalar C = Scalar C
30 eqid 1 Scalar C = 1 Scalar C
31 1 3 20 28 8 29 30 12 lcd1 φ 1 Scalar C = 1 A
32 31 oveq1d φ 1 Scalar C · ˙ i = 1 A · ˙ i
33 1 8 12 lcdlmod φ C LMod
34 19 simpld φ i F
35 9 29 22 30 lmodvs1 C LMod i F 1 Scalar C · ˙ i = i
36 33 34 35 syl2anc φ 1 Scalar C · ˙ i = i
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 mapdpglem30 φ v = 1 A v = u
38 eqtr2 v = 1 A v = u 1 A = u
39 37 38 syl φ 1 A = u
40 39 oveq1d φ 1 A · ˙ i = u · ˙ i
41 32 36 40 3eqtr3rd φ u · ˙ i = i
42 25 41 eqtrd φ h = i