Metamath Proof Explorer


Theorem mapdpglem30

Description: Lemma for mapdpg . Baer p. 45 line 18: "Hence we deduce (from mapdpglem28 , using lvecindp2 ) that v = 1 and v = u...". TODO: would it be shorter to have only the v = ( 1rA ) part and use mapdpglem28.u2 in mapdpglem31 ? (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H = LHyp K
mapdpg.m M = mapd K W
mapdpg.u U = DVecH K W
mapdpg.v V = Base U
mapdpg.s - ˙ = - U
mapdpg.z 0 ˙ = 0 U
mapdpg.n N = LSpan U
mapdpg.c C = LCDual K W
mapdpg.f F = Base C
mapdpg.r R = - C
mapdpg.j J = LSpan C
mapdpg.k φ K HL W H
mapdpg.x φ X V 0 ˙
mapdpg.y φ Y V 0 ˙
mapdpg.g φ G F
mapdpg.ne φ N X N Y
mapdpg.e φ M N X = J G
mapdpgem25.h1 φ h F M N Y = J h M N X - ˙ Y = J G R h
mapdpgem25.i1 φ i F M N Y = J i M N X - ˙ Y = J G R i
mapdpglem26.a A = Scalar U
mapdpglem26.b B = Base A
mapdpglem26.t · ˙ = C
mapdpglem26.o O = 0 A
mapdpglem28.ve φ v B
mapdpglem28.u1 φ h = u · ˙ i
mapdpglem28.u2 φ G R h = v · ˙ G R i
mapdpglem28.ue φ u B
Assertion mapdpglem30 φ v = 1 A v = u

Proof

Step Hyp Ref Expression
1 mapdpg.h H = LHyp K
2 mapdpg.m M = mapd K W
3 mapdpg.u U = DVecH K W
4 mapdpg.v V = Base U
5 mapdpg.s - ˙ = - U
6 mapdpg.z 0 ˙ = 0 U
7 mapdpg.n N = LSpan U
8 mapdpg.c C = LCDual K W
9 mapdpg.f F = Base C
10 mapdpg.r R = - C
11 mapdpg.j J = LSpan C
12 mapdpg.k φ K HL W H
13 mapdpg.x φ X V 0 ˙
14 mapdpg.y φ Y V 0 ˙
15 mapdpg.g φ G F
16 mapdpg.ne φ N X N Y
17 mapdpg.e φ M N X = J G
18 mapdpgem25.h1 φ h F M N Y = J h M N X - ˙ Y = J G R h
19 mapdpgem25.i1 φ i F M N Y = J i M N X - ˙ Y = J G R i
20 mapdpglem26.a A = Scalar U
21 mapdpglem26.b B = Base A
22 mapdpglem26.t · ˙ = C
23 mapdpglem26.o O = 0 A
24 mapdpglem28.ve φ v B
25 mapdpglem28.u1 φ h = u · ˙ i
26 mapdpglem28.u2 φ G R h = v · ˙ G R i
27 mapdpglem28.ue φ u B
28 eqid + C = + C
29 eqid Scalar C = Scalar C
30 eqid Base Scalar C = Base Scalar C
31 eqid 0 C = 0 C
32 1 8 12 lcdlvec φ C LVec
33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 mapdpglem30a φ G 0 C
34 eldifsn G F 0 C G F G 0 C
35 15 33 34 sylanbrc φ G F 0 C
36 19 simpld φ i F
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 mapdpglem30b φ i 0 C
38 eldifsn i F 0 C i F i 0 C
39 36 37 38 sylanbrc φ i F 0 C
40 1 3 20 21 8 29 30 12 lcdsbase φ Base Scalar C = B
41 24 40 eleqtrrd φ v Base Scalar C
42 1 3 12 dvhlmod φ U LMod
43 20 lmodring U LMod A Ring
44 42 43 syl φ A Ring
45 ringgrp A Ring A Grp
46 44 45 syl φ A Grp
47 eqid 1 A = 1 A
48 21 47 ringidcl A Ring 1 A B
49 44 48 syl φ 1 A B
50 eqid inv g A = inv g A
51 21 50 grpinvcl A Grp 1 A B inv g A 1 A B
52 46 49 51 syl2anc φ inv g A 1 A B
53 eqid A = A
54 21 53 ringcl A Ring v B inv g A 1 A B v A inv g A 1 A B
55 44 24 52 54 syl3anc φ v A inv g A 1 A B
56 55 40 eleqtrrd φ v A inv g A 1 A Base Scalar C
57 49 40 eleqtrrd φ 1 A Base Scalar C
58 21 53 ringcl A Ring u B inv g A 1 A B u A inv g A 1 A B
59 44 27 52 58 syl3anc φ u A inv g A 1 A B
60 59 40 eleqtrrd φ u A inv g A 1 A Base Scalar C
61 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 mapdpglem29 φ J G J i
62 1 3 20 21 53 8 9 22 12 52 27 36 lcdvsass φ u A inv g A 1 A · ˙ i = inv g A 1 A · ˙ u · ˙ i
63 62 oveq2d φ 1 A · ˙ G + C u A inv g A 1 A · ˙ i = 1 A · ˙ G + C inv g A 1 A · ˙ u · ˙ i
64 1 3 20 21 8 9 22 12 49 15 lcdvscl φ 1 A · ˙ G F
65 1 3 20 21 8 9 22 12 27 36 lcdvscl φ u · ˙ i F
66 1 3 20 50 47 8 9 28 22 10 12 64 65 lcdvsub φ 1 A · ˙ G R u · ˙ i = 1 A · ˙ G + C inv g A 1 A · ˙ u · ˙ i
67 1 3 20 21 53 8 9 22 12 52 24 36 lcdvsass φ v A inv g A 1 A · ˙ i = inv g A 1 A · ˙ v · ˙ i
68 67 oveq2d φ v · ˙ G + C v A inv g A 1 A · ˙ i = v · ˙ G + C inv g A 1 A · ˙ v · ˙ i
69 1 3 20 21 8 9 22 12 24 15 lcdvscl φ v · ˙ G F
70 1 3 20 21 8 9 22 12 24 36 lcdvscl φ v · ˙ i F
71 1 3 20 50 47 8 9 28 22 10 12 69 70 lcdvsub φ v · ˙ G R v · ˙ i = v · ˙ G + C inv g A 1 A · ˙ v · ˙ i
72 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 mapdpglem28 φ v · ˙ G R v · ˙ i = G R u · ˙ i
73 eqid 1 Scalar C = 1 Scalar C
74 1 3 20 47 8 29 73 12 lcd1 φ 1 Scalar C = 1 A
75 74 oveq1d φ 1 Scalar C · ˙ G = 1 A · ˙ G
76 1 8 12 lcdlmod φ C LMod
77 9 29 22 73 lmodvs1 C LMod G F 1 Scalar C · ˙ G = G
78 76 15 77 syl2anc φ 1 Scalar C · ˙ G = G
79 75 78 eqtr3d φ 1 A · ˙ G = G
80 79 oveq1d φ 1 A · ˙ G R u · ˙ i = G R u · ˙ i
81 72 80 eqtr4d φ v · ˙ G R v · ˙ i = 1 A · ˙ G R u · ˙ i
82 68 71 81 3eqtr2rd φ 1 A · ˙ G R u · ˙ i = v · ˙ G + C v A inv g A 1 A · ˙ i
83 63 66 82 3eqtr2rd φ v · ˙ G + C v A inv g A 1 A · ˙ i = 1 A · ˙ G + C u A inv g A 1 A · ˙ i
84 9 28 29 30 22 31 11 32 35 39 41 56 57 60 61 83 lvecindp2 φ v = 1 A v A inv g A 1 A = u A inv g A 1 A
85 21 53 47 50 44 24 rngnegr φ v A inv g A 1 A = inv g A v
86 21 53 47 50 44 27 rngnegr φ u A inv g A 1 A = inv g A u
87 85 86 eqeq12d φ v A inv g A 1 A = u A inv g A 1 A inv g A v = inv g A u
88 21 50 46 24 27 grpinv11 φ inv g A v = inv g A u v = u
89 87 88 bitrd φ v A inv g A 1 A = u A inv g A 1 A v = u
90 89 anbi2d φ v = 1 A v A inv g A 1 A = u A inv g A 1 A v = 1 A v = u
91 84 90 mpbid φ v = 1 A v = u