Metamath Proof Explorer


Theorem mapdpglem28

Description: Lemma for mapdpg . Baer p. 45 line 18: "vx'-vy'' = x'-uy''". (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H = LHyp K
mapdpg.m M = mapd K W
mapdpg.u U = DVecH K W
mapdpg.v V = Base U
mapdpg.s - ˙ = - U
mapdpg.z 0 ˙ = 0 U
mapdpg.n N = LSpan U
mapdpg.c C = LCDual K W
mapdpg.f F = Base C
mapdpg.r R = - C
mapdpg.j J = LSpan C
mapdpg.k φ K HL W H
mapdpg.x φ X V 0 ˙
mapdpg.y φ Y V 0 ˙
mapdpg.g φ G F
mapdpg.ne φ N X N Y
mapdpg.e φ M N X = J G
mapdpgem25.h1 φ h F M N Y = J h M N X - ˙ Y = J G R h
mapdpgem25.i1 φ i F M N Y = J i M N X - ˙ Y = J G R i
mapdpglem26.a A = Scalar U
mapdpglem26.b B = Base A
mapdpglem26.t · ˙ = C
mapdpglem26.o O = 0 A
mapdpglem28.ve φ v B
mapdpglem28.u1 φ h = u · ˙ i
mapdpglem28.u2 φ G R h = v · ˙ G R i
Assertion mapdpglem28 φ v · ˙ G R v · ˙ i = G R u · ˙ i

Proof

Step Hyp Ref Expression
1 mapdpg.h H = LHyp K
2 mapdpg.m M = mapd K W
3 mapdpg.u U = DVecH K W
4 mapdpg.v V = Base U
5 mapdpg.s - ˙ = - U
6 mapdpg.z 0 ˙ = 0 U
7 mapdpg.n N = LSpan U
8 mapdpg.c C = LCDual K W
9 mapdpg.f F = Base C
10 mapdpg.r R = - C
11 mapdpg.j J = LSpan C
12 mapdpg.k φ K HL W H
13 mapdpg.x φ X V 0 ˙
14 mapdpg.y φ Y V 0 ˙
15 mapdpg.g φ G F
16 mapdpg.ne φ N X N Y
17 mapdpg.e φ M N X = J G
18 mapdpgem25.h1 φ h F M N Y = J h M N X - ˙ Y = J G R h
19 mapdpgem25.i1 φ i F M N Y = J i M N X - ˙ Y = J G R i
20 mapdpglem26.a A = Scalar U
21 mapdpglem26.b B = Base A
22 mapdpglem26.t · ˙ = C
23 mapdpglem26.o O = 0 A
24 mapdpglem28.ve φ v B
25 mapdpglem28.u1 φ h = u · ˙ i
26 mapdpglem28.u2 φ G R h = v · ˙ G R i
27 25 oveq2d φ G R h = G R u · ˙ i
28 eqid Scalar C = Scalar C
29 eqid Base Scalar C = Base Scalar C
30 1 8 12 lcdlmod φ C LMod
31 1 3 20 21 8 28 29 12 lcdsbase φ Base Scalar C = B
32 24 31 eleqtrrd φ v Base Scalar C
33 19 simpld φ i F
34 9 22 28 29 10 30 32 15 33 lmodsubdi φ v · ˙ G R i = v · ˙ G R v · ˙ i
35 26 27 34 3eqtr3rd φ v · ˙ G R v · ˙ i = G R u · ˙ i