| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodsubdi.v |
|
| 2 |
|
lmodsubdi.t |
|
| 3 |
|
lmodsubdi.f |
|
| 4 |
|
lmodsubdi.k |
|
| 5 |
|
lmodsubdi.m |
|
| 6 |
|
lmodsubdi.w |
|
| 7 |
|
lmodsubdi.a |
|
| 8 |
|
lmodsubdi.x |
|
| 9 |
|
lmodsubdi.y |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
1 10 5 3 2 11 12
|
lmodvsubval2 |
|
| 14 |
6 8 9 13
|
syl3anc |
|
| 15 |
14
|
oveq2d |
|
| 16 |
|
eqid |
|
| 17 |
3
|
lmodring |
|
| 18 |
6 17
|
syl |
|
| 19 |
4 16 12 11 18 7
|
ringnegr |
|
| 20 |
4 16 12 11 18 7
|
ringnegl |
|
| 21 |
19 20
|
eqtr4d |
|
| 22 |
21
|
oveq1d |
|
| 23 |
|
ringgrp |
|
| 24 |
18 23
|
syl |
|
| 25 |
4 12
|
ringidcl |
|
| 26 |
18 25
|
syl |
|
| 27 |
4 11
|
grpinvcl |
|
| 28 |
24 26 27
|
syl2anc |
|
| 29 |
1 3 2 4 16
|
lmodvsass |
|
| 30 |
6 7 28 9 29
|
syl13anc |
|
| 31 |
1 3 2 4 16
|
lmodvsass |
|
| 32 |
6 28 7 9 31
|
syl13anc |
|
| 33 |
22 30 32
|
3eqtr3d |
|
| 34 |
33
|
oveq2d |
|
| 35 |
1 3 2 4
|
lmodvscl |
|
| 36 |
6 28 9 35
|
syl3anc |
|
| 37 |
1 10 3 2 4
|
lmodvsdi |
|
| 38 |
6 7 8 36 37
|
syl13anc |
|
| 39 |
1 3 2 4
|
lmodvscl |
|
| 40 |
6 7 8 39
|
syl3anc |
|
| 41 |
1 3 2 4
|
lmodvscl |
|
| 42 |
6 7 9 41
|
syl3anc |
|
| 43 |
1 10 5 3 2 11 12
|
lmodvsubval2 |
|
| 44 |
6 40 42 43
|
syl3anc |
|
| 45 |
34 38 44
|
3eqtr4rd |
|
| 46 |
15 45
|
eqtr4d |
|