Metamath Proof Explorer


Theorem lmodsubdi

Description: Scalar multiplication distributive law for subtraction. ( hvsubdistr1 analogue, with longer proof since our scalar multiplication is not commutative.) (Contributed by NM, 2-Jul-2014)

Ref Expression
Hypotheses lmodsubdi.v V=BaseW
lmodsubdi.t ·˙=W
lmodsubdi.f F=ScalarW
lmodsubdi.k K=BaseF
lmodsubdi.m -˙=-W
lmodsubdi.w φWLMod
lmodsubdi.a φAK
lmodsubdi.x φXV
lmodsubdi.y φYV
Assertion lmodsubdi φA·˙X-˙Y=A·˙X-˙A·˙Y

Proof

Step Hyp Ref Expression
1 lmodsubdi.v V=BaseW
2 lmodsubdi.t ·˙=W
3 lmodsubdi.f F=ScalarW
4 lmodsubdi.k K=BaseF
5 lmodsubdi.m -˙=-W
6 lmodsubdi.w φWLMod
7 lmodsubdi.a φAK
8 lmodsubdi.x φXV
9 lmodsubdi.y φYV
10 eqid +W=+W
11 eqid invgF=invgF
12 eqid 1F=1F
13 1 10 5 3 2 11 12 lmodvsubval2 WLModXVYVX-˙Y=X+WinvgF1F·˙Y
14 6 8 9 13 syl3anc φX-˙Y=X+WinvgF1F·˙Y
15 14 oveq2d φA·˙X-˙Y=A·˙X+WinvgF1F·˙Y
16 eqid F=F
17 3 lmodring WLModFRing
18 6 17 syl φFRing
19 4 16 12 11 18 7 ringnegr φAFinvgF1F=invgFA
20 4 16 12 11 18 7 ringnegl φinvgF1FFA=invgFA
21 19 20 eqtr4d φAFinvgF1F=invgF1FFA
22 21 oveq1d φAFinvgF1F·˙Y=invgF1FFA·˙Y
23 ringgrp FRingFGrp
24 18 23 syl φFGrp
25 4 12 ringidcl FRing1FK
26 18 25 syl φ1FK
27 4 11 grpinvcl FGrp1FKinvgF1FK
28 24 26 27 syl2anc φinvgF1FK
29 1 3 2 4 16 lmodvsass WLModAKinvgF1FKYVAFinvgF1F·˙Y=A·˙invgF1F·˙Y
30 6 7 28 9 29 syl13anc φAFinvgF1F·˙Y=A·˙invgF1F·˙Y
31 1 3 2 4 16 lmodvsass WLModinvgF1FKAKYVinvgF1FFA·˙Y=invgF1F·˙A·˙Y
32 6 28 7 9 31 syl13anc φinvgF1FFA·˙Y=invgF1F·˙A·˙Y
33 22 30 32 3eqtr3d φA·˙invgF1F·˙Y=invgF1F·˙A·˙Y
34 33 oveq2d φA·˙X+WA·˙invgF1F·˙Y=A·˙X+WinvgF1F·˙A·˙Y
35 1 3 2 4 lmodvscl WLModinvgF1FKYVinvgF1F·˙YV
36 6 28 9 35 syl3anc φinvgF1F·˙YV
37 1 10 3 2 4 lmodvsdi WLModAKXVinvgF1F·˙YVA·˙X+WinvgF1F·˙Y=A·˙X+WA·˙invgF1F·˙Y
38 6 7 8 36 37 syl13anc φA·˙X+WinvgF1F·˙Y=A·˙X+WA·˙invgF1F·˙Y
39 1 3 2 4 lmodvscl WLModAKXVA·˙XV
40 6 7 8 39 syl3anc φA·˙XV
41 1 3 2 4 lmodvscl WLModAKYVA·˙YV
42 6 7 9 41 syl3anc φA·˙YV
43 1 10 5 3 2 11 12 lmodvsubval2 WLModA·˙XVA·˙YVA·˙X-˙A·˙Y=A·˙X+WinvgF1F·˙A·˙Y
44 6 40 42 43 syl3anc φA·˙X-˙A·˙Y=A·˙X+WinvgF1F·˙A·˙Y
45 34 38 44 3eqtr4rd φA·˙X-˙A·˙Y=A·˙X+WinvgF1F·˙Y
46 15 45 eqtr4d φA·˙X-˙Y=A·˙X-˙A·˙Y