Description: Scalar multiplication distributive law for subtraction. ( hvsubdistr1 analogue, with longer proof since our scalar multiplication is not commutative.) (Contributed by NM, 2-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmodsubdi.v | |
|
lmodsubdi.t | |
||
lmodsubdi.f | |
||
lmodsubdi.k | |
||
lmodsubdi.m | |
||
lmodsubdi.w | |
||
lmodsubdi.a | |
||
lmodsubdi.x | |
||
lmodsubdi.y | |
||
Assertion | lmodsubdi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodsubdi.v | |
|
2 | lmodsubdi.t | |
|
3 | lmodsubdi.f | |
|
4 | lmodsubdi.k | |
|
5 | lmodsubdi.m | |
|
6 | lmodsubdi.w | |
|
7 | lmodsubdi.a | |
|
8 | lmodsubdi.x | |
|
9 | lmodsubdi.y | |
|
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 1 10 5 3 2 11 12 | lmodvsubval2 | |
14 | 6 8 9 13 | syl3anc | |
15 | 14 | oveq2d | |
16 | eqid | |
|
17 | 3 | lmodring | |
18 | 6 17 | syl | |
19 | 4 16 12 11 18 7 | ringnegr | |
20 | 4 16 12 11 18 7 | ringnegl | |
21 | 19 20 | eqtr4d | |
22 | 21 | oveq1d | |
23 | ringgrp | |
|
24 | 18 23 | syl | |
25 | 4 12 | ringidcl | |
26 | 18 25 | syl | |
27 | 4 11 | grpinvcl | |
28 | 24 26 27 | syl2anc | |
29 | 1 3 2 4 16 | lmodvsass | |
30 | 6 7 28 9 29 | syl13anc | |
31 | 1 3 2 4 16 | lmodvsass | |
32 | 6 28 7 9 31 | syl13anc | |
33 | 22 30 32 | 3eqtr3d | |
34 | 33 | oveq2d | |
35 | 1 3 2 4 | lmodvscl | |
36 | 6 28 9 35 | syl3anc | |
37 | 1 10 3 2 4 | lmodvsdi | |
38 | 6 7 8 36 37 | syl13anc | |
39 | 1 3 2 4 | lmodvscl | |
40 | 6 7 8 39 | syl3anc | |
41 | 1 3 2 4 | lmodvscl | |
42 | 6 7 9 41 | syl3anc | |
43 | 1 10 5 3 2 11 12 | lmodvsubval2 | |
44 | 6 40 42 43 | syl3anc | |
45 | 34 38 44 | 3eqtr4rd | |
46 | 15 45 | eqtr4d | |