| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodsubdi.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lmodsubdi.t |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
lmodsubdi.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
lmodsubdi.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
lmodsubdi.m |
⊢ − = ( -g ‘ 𝑊 ) |
| 6 |
|
lmodsubdi.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 7 |
|
lmodsubdi.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
| 8 |
|
lmodsubdi.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 9 |
|
lmodsubdi.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 11 |
|
eqid |
⊢ ( invg ‘ 𝐹 ) = ( invg ‘ 𝐹 ) |
| 12 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
| 13 |
1 10 5 3 2 11 12
|
lmodvsubval2 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) |
| 14 |
6 8 9 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 − 𝑌 ) ) = ( 𝐴 · ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) ) |
| 16 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
| 17 |
3
|
lmodring |
⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 18 |
6 17
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 19 |
4 16 12 11 18 7
|
ringnegr |
⊢ ( 𝜑 → ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) = ( ( invg ‘ 𝐹 ) ‘ 𝐴 ) ) |
| 20 |
4 16 12 11 18 7
|
ringnegl |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) = ( ( invg ‘ 𝐹 ) ‘ 𝐴 ) ) |
| 21 |
19 20
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) ) |
| 22 |
21
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) · 𝑌 ) = ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) ) |
| 23 |
|
ringgrp |
⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) |
| 24 |
18 23
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 25 |
4 12
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 26 |
18 25
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 27 |
4 11
|
grpinvcl |
⊢ ( ( 𝐹 ∈ Grp ∧ ( 1r ‘ 𝐹 ) ∈ 𝐾 ) → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 28 |
24 26 27
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 29 |
1 3 2 4 16
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) · 𝑌 ) = ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) |
| 30 |
6 7 28 9 29
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐴 ( .r ‘ 𝐹 ) ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ) · 𝑌 ) = ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) |
| 31 |
1 3 2 4 16
|
lmodvsass |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) |
| 32 |
6 28 7 9 31
|
syl13anc |
⊢ ( 𝜑 → ( ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝐴 ) · 𝑌 ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) |
| 33 |
22 30 32
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) = ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) ) |
| 35 |
1 3 2 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ∈ 𝑉 ) |
| 36 |
6 28 9 35
|
syl3anc |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ∈ 𝑉 ) |
| 37 |
1 10 3 2 4
|
lmodvsdi |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) ) |
| 38 |
6 7 8 36 37
|
syl13anc |
⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝐴 · ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) ) |
| 39 |
1 3 2 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 40 |
6 7 8 39
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 41 |
1 3 2 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
| 42 |
6 7 9 41
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
| 43 |
1 10 5 3 2 11 12
|
lmodvsubval2 |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 · 𝑋 ) ∈ 𝑉 ∧ ( 𝐴 · 𝑌 ) ∈ 𝑉 ) → ( ( 𝐴 · 𝑋 ) − ( 𝐴 · 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) ) |
| 44 |
6 40 42 43
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) − ( 𝐴 · 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · ( 𝐴 · 𝑌 ) ) ) ) |
| 45 |
34 38 44
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) − ( 𝐴 · 𝑌 ) ) = ( 𝐴 · ( 𝑋 ( +g ‘ 𝑊 ) ( ( ( invg ‘ 𝐹 ) ‘ ( 1r ‘ 𝐹 ) ) · 𝑌 ) ) ) ) |
| 46 |
15 45
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐴 · ( 𝑋 − 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) − ( 𝐴 · 𝑌 ) ) ) |