Description: Lemma for mapdpg . Baer p. 45 line 18: "vx'-vy'' = x'-uy''". (Contributed by NM, 22-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdpg.h | |- H = ( LHyp ` K ) |
|
mapdpg.m | |- M = ( ( mapd ` K ) ` W ) |
||
mapdpg.u | |- U = ( ( DVecH ` K ) ` W ) |
||
mapdpg.v | |- V = ( Base ` U ) |
||
mapdpg.s | |- .- = ( -g ` U ) |
||
mapdpg.z | |- .0. = ( 0g ` U ) |
||
mapdpg.n | |- N = ( LSpan ` U ) |
||
mapdpg.c | |- C = ( ( LCDual ` K ) ` W ) |
||
mapdpg.f | |- F = ( Base ` C ) |
||
mapdpg.r | |- R = ( -g ` C ) |
||
mapdpg.j | |- J = ( LSpan ` C ) |
||
mapdpg.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
||
mapdpg.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
mapdpg.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
||
mapdpg.g | |- ( ph -> G e. F ) |
||
mapdpg.ne | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
||
mapdpg.e | |- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) |
||
mapdpgem25.h1 | |- ( ph -> ( h e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) ) |
||
mapdpgem25.i1 | |- ( ph -> ( i e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) ) |
||
mapdpglem26.a | |- A = ( Scalar ` U ) |
||
mapdpglem26.b | |- B = ( Base ` A ) |
||
mapdpglem26.t | |- .x. = ( .s ` C ) |
||
mapdpglem26.o | |- O = ( 0g ` A ) |
||
mapdpglem28.ve | |- ( ph -> v e. B ) |
||
mapdpglem28.u1 | |- ( ph -> h = ( u .x. i ) ) |
||
mapdpglem28.u2 | |- ( ph -> ( G R h ) = ( v .x. ( G R i ) ) ) |
||
Assertion | mapdpglem28 | |- ( ph -> ( ( v .x. G ) R ( v .x. i ) ) = ( G R ( u .x. i ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpg.h | |- H = ( LHyp ` K ) |
|
2 | mapdpg.m | |- M = ( ( mapd ` K ) ` W ) |
|
3 | mapdpg.u | |- U = ( ( DVecH ` K ) ` W ) |
|
4 | mapdpg.v | |- V = ( Base ` U ) |
|
5 | mapdpg.s | |- .- = ( -g ` U ) |
|
6 | mapdpg.z | |- .0. = ( 0g ` U ) |
|
7 | mapdpg.n | |- N = ( LSpan ` U ) |
|
8 | mapdpg.c | |- C = ( ( LCDual ` K ) ` W ) |
|
9 | mapdpg.f | |- F = ( Base ` C ) |
|
10 | mapdpg.r | |- R = ( -g ` C ) |
|
11 | mapdpg.j | |- J = ( LSpan ` C ) |
|
12 | mapdpg.k | |- ( ph -> ( K e. HL /\ W e. H ) ) |
|
13 | mapdpg.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
14 | mapdpg.y | |- ( ph -> Y e. ( V \ { .0. } ) ) |
|
15 | mapdpg.g | |- ( ph -> G e. F ) |
|
16 | mapdpg.ne | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
|
17 | mapdpg.e | |- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) |
|
18 | mapdpgem25.h1 | |- ( ph -> ( h e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) ) |
|
19 | mapdpgem25.i1 | |- ( ph -> ( i e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) ) |
|
20 | mapdpglem26.a | |- A = ( Scalar ` U ) |
|
21 | mapdpglem26.b | |- B = ( Base ` A ) |
|
22 | mapdpglem26.t | |- .x. = ( .s ` C ) |
|
23 | mapdpglem26.o | |- O = ( 0g ` A ) |
|
24 | mapdpglem28.ve | |- ( ph -> v e. B ) |
|
25 | mapdpglem28.u1 | |- ( ph -> h = ( u .x. i ) ) |
|
26 | mapdpglem28.u2 | |- ( ph -> ( G R h ) = ( v .x. ( G R i ) ) ) |
|
27 | 25 | oveq2d | |- ( ph -> ( G R h ) = ( G R ( u .x. i ) ) ) |
28 | eqid | |- ( Scalar ` C ) = ( Scalar ` C ) |
|
29 | eqid | |- ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) |
|
30 | 1 8 12 | lcdlmod | |- ( ph -> C e. LMod ) |
31 | 1 3 20 21 8 28 29 12 | lcdsbase | |- ( ph -> ( Base ` ( Scalar ` C ) ) = B ) |
32 | 24 31 | eleqtrrd | |- ( ph -> v e. ( Base ` ( Scalar ` C ) ) ) |
33 | 19 | simpld | |- ( ph -> i e. F ) |
34 | 9 22 28 29 10 30 32 15 33 | lmodsubdi | |- ( ph -> ( v .x. ( G R i ) ) = ( ( v .x. G ) R ( v .x. i ) ) ) |
35 | 26 27 34 | 3eqtr3rd | |- ( ph -> ( ( v .x. G ) R ( v .x. i ) ) = ( G R ( u .x. i ) ) ) |