Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpg.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdpg.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdpg.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdpg.v |
|- V = ( Base ` U ) |
5 |
|
mapdpg.s |
|- .- = ( -g ` U ) |
6 |
|
mapdpg.z |
|- .0. = ( 0g ` U ) |
7 |
|
mapdpg.n |
|- N = ( LSpan ` U ) |
8 |
|
mapdpg.c |
|- C = ( ( LCDual ` K ) ` W ) |
9 |
|
mapdpg.f |
|- F = ( Base ` C ) |
10 |
|
mapdpg.r |
|- R = ( -g ` C ) |
11 |
|
mapdpg.j |
|- J = ( LSpan ` C ) |
12 |
|
mapdpg.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
13 |
|
mapdpg.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
14 |
|
mapdpg.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
15 |
|
mapdpg.g |
|- ( ph -> G e. F ) |
16 |
|
mapdpg.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
17 |
|
mapdpg.e |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
mapdpglem24 |
|- ( ph -> E. h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
mapdpglem32 |
|- ( ( ph /\ ( h e. F /\ i e. F ) /\ ( ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) ) -> h = i ) |
20 |
19
|
3exp |
|- ( ph -> ( ( h e. F /\ i e. F ) -> ( ( ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) -> h = i ) ) ) |
21 |
20
|
ralrimivv |
|- ( ph -> A. h e. F A. i e. F ( ( ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) -> h = i ) ) |
22 |
|
sneq |
|- ( h = i -> { h } = { i } ) |
23 |
22
|
fveq2d |
|- ( h = i -> ( J ` { h } ) = ( J ` { i } ) ) |
24 |
23
|
eqeq2d |
|- ( h = i -> ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) <-> ( M ` ( N ` { Y } ) ) = ( J ` { i } ) ) ) |
25 |
|
oveq2 |
|- ( h = i -> ( G R h ) = ( G R i ) ) |
26 |
25
|
sneqd |
|- ( h = i -> { ( G R h ) } = { ( G R i ) } ) |
27 |
26
|
fveq2d |
|- ( h = i -> ( J ` { ( G R h ) } ) = ( J ` { ( G R i ) } ) ) |
28 |
27
|
eqeq2d |
|- ( h = i -> ( ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) <-> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) |
29 |
24 28
|
anbi12d |
|- ( h = i -> ( ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) ) |
30 |
29
|
reu4 |
|- ( E! h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) <-> ( E. h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) /\ A. h e. F A. i e. F ( ( ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) -> h = i ) ) ) |
31 |
18 21 30
|
sylanbrc |
|- ( ph -> E! h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) |