Metamath Proof Explorer


Theorem mapdpg

Description: Part 1 of proof of the first fundamental theorem of projective geometry. Part (1) in Baer p. 44. Our notation corresponds to Baer's as follows: M for *, N{ } for F(), J{ } for G(), X for x, G for x', Y for y, h for y'. TODO: Rename variables per mapdhval . (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h
|- H = ( LHyp ` K )
mapdpg.m
|- M = ( ( mapd ` K ) ` W )
mapdpg.u
|- U = ( ( DVecH ` K ) ` W )
mapdpg.v
|- V = ( Base ` U )
mapdpg.s
|- .- = ( -g ` U )
mapdpg.z
|- .0. = ( 0g ` U )
mapdpg.n
|- N = ( LSpan ` U )
mapdpg.c
|- C = ( ( LCDual ` K ) ` W )
mapdpg.f
|- F = ( Base ` C )
mapdpg.r
|- R = ( -g ` C )
mapdpg.j
|- J = ( LSpan ` C )
mapdpg.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdpg.x
|- ( ph -> X e. ( V \ { .0. } ) )
mapdpg.y
|- ( ph -> Y e. ( V \ { .0. } ) )
mapdpg.g
|- ( ph -> G e. F )
mapdpg.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
mapdpg.e
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) )
Assertion mapdpg
|- ( ph -> E! h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) )

Proof

Step Hyp Ref Expression
1 mapdpg.h
 |-  H = ( LHyp ` K )
2 mapdpg.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdpg.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdpg.v
 |-  V = ( Base ` U )
5 mapdpg.s
 |-  .- = ( -g ` U )
6 mapdpg.z
 |-  .0. = ( 0g ` U )
7 mapdpg.n
 |-  N = ( LSpan ` U )
8 mapdpg.c
 |-  C = ( ( LCDual ` K ) ` W )
9 mapdpg.f
 |-  F = ( Base ` C )
10 mapdpg.r
 |-  R = ( -g ` C )
11 mapdpg.j
 |-  J = ( LSpan ` C )
12 mapdpg.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
13 mapdpg.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
14 mapdpg.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
15 mapdpg.g
 |-  ( ph -> G e. F )
16 mapdpg.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
17 mapdpg.e
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) )
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 mapdpglem24
 |-  ( ph -> E. h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) )
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 mapdpglem32
 |-  ( ( ph /\ ( h e. F /\ i e. F ) /\ ( ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) ) -> h = i )
20 19 3exp
 |-  ( ph -> ( ( h e. F /\ i e. F ) -> ( ( ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) -> h = i ) ) )
21 20 ralrimivv
 |-  ( ph -> A. h e. F A. i e. F ( ( ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) -> h = i ) )
22 sneq
 |-  ( h = i -> { h } = { i } )
23 22 fveq2d
 |-  ( h = i -> ( J ` { h } ) = ( J ` { i } ) )
24 23 eqeq2d
 |-  ( h = i -> ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) <-> ( M ` ( N ` { Y } ) ) = ( J ` { i } ) ) )
25 oveq2
 |-  ( h = i -> ( G R h ) = ( G R i ) )
26 25 sneqd
 |-  ( h = i -> { ( G R h ) } = { ( G R i ) } )
27 26 fveq2d
 |-  ( h = i -> ( J ` { ( G R h ) } ) = ( J ` { ( G R i ) } ) )
28 27 eqeq2d
 |-  ( h = i -> ( ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) <-> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) )
29 24 28 anbi12d
 |-  ( h = i -> ( ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) <-> ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) )
30 29 reu4
 |-  ( E! h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) <-> ( E. h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) /\ A. h e. F A. i e. F ( ( ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) -> h = i ) ) )
31 18 21 30 sylanbrc
 |-  ( ph -> E! h e. F ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) )