Metamath Proof Explorer


Theorem mapdpglem28

Description: Lemma for mapdpg . Baer p. 45 line 18: "vx'-vy'' = x'-uy''". (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdpg.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.v 𝑉 = ( Base ‘ 𝑈 )
mapdpg.s = ( -g𝑈 )
mapdpg.z 0 = ( 0g𝑈 )
mapdpg.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdpg.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.f 𝐹 = ( Base ‘ 𝐶 )
mapdpg.r 𝑅 = ( -g𝐶 )
mapdpg.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdpg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdpg.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdpg.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
mapdpg.g ( 𝜑𝐺𝐹 )
mapdpg.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
mapdpg.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
mapdpgem25.h1 ( 𝜑 → ( 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ) } ) ) ) )
mapdpgem25.i1 ( 𝜑 → ( 𝑖𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )
mapdpglem26.a 𝐴 = ( Scalar ‘ 𝑈 )
mapdpglem26.b 𝐵 = ( Base ‘ 𝐴 )
mapdpglem26.t · = ( ·𝑠𝐶 )
mapdpglem26.o 𝑂 = ( 0g𝐴 )
mapdpglem28.ve ( 𝜑𝑣𝐵 )
mapdpglem28.u1 ( 𝜑 = ( 𝑢 · 𝑖 ) )
mapdpglem28.u2 ( 𝜑 → ( 𝐺 𝑅 ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) )
Assertion mapdpglem28 ( 𝜑 → ( ( 𝑣 · 𝐺 ) 𝑅 ( 𝑣 · 𝑖 ) ) = ( 𝐺 𝑅 ( 𝑢 · 𝑖 ) ) )

Proof

Step Hyp Ref Expression
1 mapdpg.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdpg.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdpg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdpg.v 𝑉 = ( Base ‘ 𝑈 )
5 mapdpg.s = ( -g𝑈 )
6 mapdpg.z 0 = ( 0g𝑈 )
7 mapdpg.n 𝑁 = ( LSpan ‘ 𝑈 )
8 mapdpg.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
9 mapdpg.f 𝐹 = ( Base ‘ 𝐶 )
10 mapdpg.r 𝑅 = ( -g𝐶 )
11 mapdpg.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdpg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 mapdpg.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
14 mapdpg.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
15 mapdpg.g ( 𝜑𝐺𝐹 )
16 mapdpg.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
17 mapdpg.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
18 mapdpgem25.h1 ( 𝜑 → ( 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ) } ) ) ) )
19 mapdpgem25.i1 ( 𝜑 → ( 𝑖𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )
20 mapdpglem26.a 𝐴 = ( Scalar ‘ 𝑈 )
21 mapdpglem26.b 𝐵 = ( Base ‘ 𝐴 )
22 mapdpglem26.t · = ( ·𝑠𝐶 )
23 mapdpglem26.o 𝑂 = ( 0g𝐴 )
24 mapdpglem28.ve ( 𝜑𝑣𝐵 )
25 mapdpglem28.u1 ( 𝜑 = ( 𝑢 · 𝑖 ) )
26 mapdpglem28.u2 ( 𝜑 → ( 𝐺 𝑅 ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) )
27 25 oveq2d ( 𝜑 → ( 𝐺 𝑅 ) = ( 𝐺 𝑅 ( 𝑢 · 𝑖 ) ) )
28 eqid ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 )
29 eqid ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) )
30 1 8 12 lcdlmod ( 𝜑𝐶 ∈ LMod )
31 1 3 20 21 8 28 29 12 lcdsbase ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐵 )
32 24 31 eleqtrrd ( 𝜑𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
33 19 simpld ( 𝜑𝑖𝐹 )
34 9 22 28 29 10 30 32 15 33 lmodsubdi ( 𝜑 → ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) = ( ( 𝑣 · 𝐺 ) 𝑅 ( 𝑣 · 𝑖 ) ) )
35 26 27 34 3eqtr3rd ( 𝜑 → ( ( 𝑣 · 𝐺 ) 𝑅 ( 𝑣 · 𝑖 ) ) = ( 𝐺 𝑅 ( 𝑢 · 𝑖 ) ) )