| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpg.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdpg.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdpg.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdpg.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | mapdpg.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 6 |  | mapdpg.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 7 |  | mapdpg.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | mapdpg.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | mapdpg.f | ⊢ 𝐹  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | mapdpg.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 11 |  | mapdpg.j | ⊢ 𝐽  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | mapdpg.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | mapdpg.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 14 |  | mapdpg.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 15 |  | mapdpg.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 16 |  | mapdpg.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 17 |  | mapdpg.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 18 |  | mapdpgem25.h1 | ⊢ ( 𝜑  →  ( ℎ  ∈  𝐹  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) | 
						
							| 19 |  | mapdpgem25.i1 | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝐹  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) | 
						
							| 20 |  | mapdpglem26.a | ⊢ 𝐴  =  ( Scalar ‘ 𝑈 ) | 
						
							| 21 |  | mapdpglem26.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 22 |  | mapdpglem26.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 23 |  | mapdpglem26.o | ⊢ 𝑂  =  ( 0g ‘ 𝐴 ) | 
						
							| 24 |  | mapdpglem28.ve | ⊢ ( 𝜑  →  𝑣  ∈  𝐵 ) | 
						
							| 25 |  | mapdpglem28.u1 | ⊢ ( 𝜑  →  ℎ  =  ( 𝑢  ·  𝑖 ) ) | 
						
							| 26 |  | mapdpglem28.u2 | ⊢ ( 𝜑  →  ( 𝐺 𝑅 ℎ )  =  ( 𝑣  ·  ( 𝐺 𝑅 𝑖 ) ) ) | 
						
							| 27 |  | mapdpglem28.ue | ⊢ ( 𝜑  →  𝑢  ∈  𝐵 ) | 
						
							| 28 |  | eqid | ⊢ ( +g ‘ 𝐶 )  =  ( +g ‘ 𝐶 ) | 
						
							| 29 |  | eqid | ⊢ ( Scalar ‘ 𝐶 )  =  ( Scalar ‘ 𝐶 ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 31 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 32 | 1 8 12 | lcdlvec | ⊢ ( 𝜑  →  𝐶  ∈  LVec ) | 
						
							| 33 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | mapdpglem30a | ⊢ ( 𝜑  →  𝐺  ≠  ( 0g ‘ 𝐶 ) ) | 
						
							| 34 |  | eldifsn | ⊢ ( 𝐺  ∈  ( 𝐹  ∖  { ( 0g ‘ 𝐶 ) } )  ↔  ( 𝐺  ∈  𝐹  ∧  𝐺  ≠  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 35 | 15 33 34 | sylanbrc | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐹  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 36 | 19 | simpld | ⊢ ( 𝜑  →  𝑖  ∈  𝐹 ) | 
						
							| 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | mapdpglem30b | ⊢ ( 𝜑  →  𝑖  ≠  ( 0g ‘ 𝐶 ) ) | 
						
							| 38 |  | eldifsn | ⊢ ( 𝑖  ∈  ( 𝐹  ∖  { ( 0g ‘ 𝐶 ) } )  ↔  ( 𝑖  ∈  𝐹  ∧  𝑖  ≠  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 39 | 36 37 38 | sylanbrc | ⊢ ( 𝜑  →  𝑖  ∈  ( 𝐹  ∖  { ( 0g ‘ 𝐶 ) } ) ) | 
						
							| 40 | 1 3 20 21 8 29 30 12 | lcdsbase | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  𝐵 ) | 
						
							| 41 | 24 40 | eleqtrrd | ⊢ ( 𝜑  →  𝑣  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 42 | 1 3 12 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 43 | 20 | lmodring | ⊢ ( 𝑈  ∈  LMod  →  𝐴  ∈  Ring ) | 
						
							| 44 | 42 43 | syl | ⊢ ( 𝜑  →  𝐴  ∈  Ring ) | 
						
							| 45 |  | ringgrp | ⊢ ( 𝐴  ∈  Ring  →  𝐴  ∈  Grp ) | 
						
							| 46 | 44 45 | syl | ⊢ ( 𝜑  →  𝐴  ∈  Grp ) | 
						
							| 47 |  | eqid | ⊢ ( 1r ‘ 𝐴 )  =  ( 1r ‘ 𝐴 ) | 
						
							| 48 | 21 47 | ringidcl | ⊢ ( 𝐴  ∈  Ring  →  ( 1r ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 49 | 44 48 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 50 |  | eqid | ⊢ ( invg ‘ 𝐴 )  =  ( invg ‘ 𝐴 ) | 
						
							| 51 | 21 50 | grpinvcl | ⊢ ( ( 𝐴  ∈  Grp  ∧  ( 1r ‘ 𝐴 )  ∈  𝐵 )  →  ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) )  ∈  𝐵 ) | 
						
							| 52 | 46 49 51 | syl2anc | ⊢ ( 𝜑  →  ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) )  ∈  𝐵 ) | 
						
							| 53 |  | eqid | ⊢ ( .r ‘ 𝐴 )  =  ( .r ‘ 𝐴 ) | 
						
							| 54 | 21 53 | ringcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑣  ∈  𝐵  ∧  ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) )  ∈  𝐵 )  →  ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ∈  𝐵 ) | 
						
							| 55 | 44 24 52 54 | syl3anc | ⊢ ( 𝜑  →  ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ∈  𝐵 ) | 
						
							| 56 | 55 40 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 57 | 49 40 | eleqtrrd | ⊢ ( 𝜑  →  ( 1r ‘ 𝐴 )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 58 | 21 53 | ringcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑢  ∈  𝐵  ∧  ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) )  ∈  𝐵 )  →  ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ∈  𝐵 ) | 
						
							| 59 | 44 27 52 58 | syl3anc | ⊢ ( 𝜑  →  ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ∈  𝐵 ) | 
						
							| 60 | 59 40 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) | 
						
							| 61 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | mapdpglem29 | ⊢ ( 𝜑  →  ( 𝐽 ‘ { 𝐺 } )  ≠  ( 𝐽 ‘ { 𝑖 } ) ) | 
						
							| 62 | 1 3 20 21 53 8 9 22 12 52 27 36 | lcdvsass | ⊢ ( 𝜑  →  ( ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ·  𝑖 )  =  ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) )  ·  ( 𝑢  ·  𝑖 ) ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝜑  →  ( ( ( 1r ‘ 𝐴 )  ·  𝐺 ) ( +g ‘ 𝐶 ) ( ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ·  𝑖 ) )  =  ( ( ( 1r ‘ 𝐴 )  ·  𝐺 ) ( +g ‘ 𝐶 ) ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) )  ·  ( 𝑢  ·  𝑖 ) ) ) ) | 
						
							| 64 | 1 3 20 21 8 9 22 12 49 15 | lcdvscl | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝐴 )  ·  𝐺 )  ∈  𝐹 ) | 
						
							| 65 | 1 3 20 21 8 9 22 12 27 36 | lcdvscl | ⊢ ( 𝜑  →  ( 𝑢  ·  𝑖 )  ∈  𝐹 ) | 
						
							| 66 | 1 3 20 50 47 8 9 28 22 10 12 64 65 | lcdvsub | ⊢ ( 𝜑  →  ( ( ( 1r ‘ 𝐴 )  ·  𝐺 ) 𝑅 ( 𝑢  ·  𝑖 ) )  =  ( ( ( 1r ‘ 𝐴 )  ·  𝐺 ) ( +g ‘ 𝐶 ) ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) )  ·  ( 𝑢  ·  𝑖 ) ) ) ) | 
						
							| 67 | 1 3 20 21 53 8 9 22 12 52 24 36 | lcdvsass | ⊢ ( 𝜑  →  ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ·  𝑖 )  =  ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) )  ·  ( 𝑣  ·  𝑖 ) ) ) | 
						
							| 68 | 67 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝑣  ·  𝐺 ) ( +g ‘ 𝐶 ) ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ·  𝑖 ) )  =  ( ( 𝑣  ·  𝐺 ) ( +g ‘ 𝐶 ) ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) )  ·  ( 𝑣  ·  𝑖 ) ) ) ) | 
						
							| 69 | 1 3 20 21 8 9 22 12 24 15 | lcdvscl | ⊢ ( 𝜑  →  ( 𝑣  ·  𝐺 )  ∈  𝐹 ) | 
						
							| 70 | 1 3 20 21 8 9 22 12 24 36 | lcdvscl | ⊢ ( 𝜑  →  ( 𝑣  ·  𝑖 )  ∈  𝐹 ) | 
						
							| 71 | 1 3 20 50 47 8 9 28 22 10 12 69 70 | lcdvsub | ⊢ ( 𝜑  →  ( ( 𝑣  ·  𝐺 ) 𝑅 ( 𝑣  ·  𝑖 ) )  =  ( ( 𝑣  ·  𝐺 ) ( +g ‘ 𝐶 ) ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) )  ·  ( 𝑣  ·  𝑖 ) ) ) ) | 
						
							| 72 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | mapdpglem28 | ⊢ ( 𝜑  →  ( ( 𝑣  ·  𝐺 ) 𝑅 ( 𝑣  ·  𝑖 ) )  =  ( 𝐺 𝑅 ( 𝑢  ·  𝑖 ) ) ) | 
						
							| 73 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝐶 ) )  =  ( 1r ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 74 | 1 3 20 47 8 29 73 12 | lcd1 | ⊢ ( 𝜑  →  ( 1r ‘ ( Scalar ‘ 𝐶 ) )  =  ( 1r ‘ 𝐴 ) ) | 
						
							| 75 | 74 | oveq1d | ⊢ ( 𝜑  →  ( ( 1r ‘ ( Scalar ‘ 𝐶 ) )  ·  𝐺 )  =  ( ( 1r ‘ 𝐴 )  ·  𝐺 ) ) | 
						
							| 76 | 1 8 12 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 77 | 9 29 22 73 | lmodvs1 | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝐺  ∈  𝐹 )  →  ( ( 1r ‘ ( Scalar ‘ 𝐶 ) )  ·  𝐺 )  =  𝐺 ) | 
						
							| 78 | 76 15 77 | syl2anc | ⊢ ( 𝜑  →  ( ( 1r ‘ ( Scalar ‘ 𝐶 ) )  ·  𝐺 )  =  𝐺 ) | 
						
							| 79 | 75 78 | eqtr3d | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝐴 )  ·  𝐺 )  =  𝐺 ) | 
						
							| 80 | 79 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 1r ‘ 𝐴 )  ·  𝐺 ) 𝑅 ( 𝑢  ·  𝑖 ) )  =  ( 𝐺 𝑅 ( 𝑢  ·  𝑖 ) ) ) | 
						
							| 81 | 72 80 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑣  ·  𝐺 ) 𝑅 ( 𝑣  ·  𝑖 ) )  =  ( ( ( 1r ‘ 𝐴 )  ·  𝐺 ) 𝑅 ( 𝑢  ·  𝑖 ) ) ) | 
						
							| 82 | 68 71 81 | 3eqtr2rd | ⊢ ( 𝜑  →  ( ( ( 1r ‘ 𝐴 )  ·  𝐺 ) 𝑅 ( 𝑢  ·  𝑖 ) )  =  ( ( 𝑣  ·  𝐺 ) ( +g ‘ 𝐶 ) ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ·  𝑖 ) ) ) | 
						
							| 83 | 63 66 82 | 3eqtr2rd | ⊢ ( 𝜑  →  ( ( 𝑣  ·  𝐺 ) ( +g ‘ 𝐶 ) ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ·  𝑖 ) )  =  ( ( ( 1r ‘ 𝐴 )  ·  𝐺 ) ( +g ‘ 𝐶 ) ( ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ·  𝑖 ) ) ) | 
						
							| 84 | 9 28 29 30 22 31 11 32 35 39 41 56 57 60 61 83 | lvecindp2 | ⊢ ( 𝜑  →  ( 𝑣  =  ( 1r ‘ 𝐴 )  ∧  ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  =  ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) ) ) | 
						
							| 85 | 21 53 47 50 44 24 | ringnegr | ⊢ ( 𝜑  →  ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  =  ( ( invg ‘ 𝐴 ) ‘ 𝑣 ) ) | 
						
							| 86 | 21 53 47 50 44 27 | ringnegr | ⊢ ( 𝜑  →  ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  =  ( ( invg ‘ 𝐴 ) ‘ 𝑢 ) ) | 
						
							| 87 | 85 86 | eqeq12d | ⊢ ( 𝜑  →  ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  =  ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ↔  ( ( invg ‘ 𝐴 ) ‘ 𝑣 )  =  ( ( invg ‘ 𝐴 ) ‘ 𝑢 ) ) ) | 
						
							| 88 | 21 50 46 24 27 | grpinv11 | ⊢ ( 𝜑  →  ( ( ( invg ‘ 𝐴 ) ‘ 𝑣 )  =  ( ( invg ‘ 𝐴 ) ‘ 𝑢 )  ↔  𝑣  =  𝑢 ) ) | 
						
							| 89 | 87 88 | bitrd | ⊢ ( 𝜑  →  ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  =  ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  ↔  𝑣  =  𝑢 ) ) | 
						
							| 90 | 89 | anbi2d | ⊢ ( 𝜑  →  ( ( 𝑣  =  ( 1r ‘ 𝐴 )  ∧  ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) )  =  ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) )  ↔  ( 𝑣  =  ( 1r ‘ 𝐴 )  ∧  𝑣  =  𝑢 ) ) ) | 
						
							| 91 | 84 90 | mpbid | ⊢ ( 𝜑  →  ( 𝑣  =  ( 1r ‘ 𝐴 )  ∧  𝑣  =  𝑢 ) ) |