Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpg.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdpg.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdpg.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdpg.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
mapdpg.s |
⊢ − = ( -g ‘ 𝑈 ) |
6 |
|
mapdpg.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
mapdpg.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
mapdpg.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
mapdpg.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
10 |
|
mapdpg.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
11 |
|
mapdpg.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
mapdpg.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
mapdpg.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
14 |
|
mapdpg.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
15 |
|
mapdpg.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
16 |
|
mapdpg.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
17 |
|
mapdpg.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
18 |
|
mapdpgem25.h1 |
⊢ ( 𝜑 → ( ℎ ∈ 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) |
19 |
|
mapdpgem25.i1 |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) |
20 |
|
mapdpglem26.a |
⊢ 𝐴 = ( Scalar ‘ 𝑈 ) |
21 |
|
mapdpglem26.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
22 |
|
mapdpglem26.t |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
23 |
|
mapdpglem26.o |
⊢ 𝑂 = ( 0g ‘ 𝐴 ) |
24 |
|
mapdpglem28.ve |
⊢ ( 𝜑 → 𝑣 ∈ 𝐵 ) |
25 |
|
mapdpglem28.u1 |
⊢ ( 𝜑 → ℎ = ( 𝑢 · 𝑖 ) ) |
26 |
|
mapdpglem28.u2 |
⊢ ( 𝜑 → ( 𝐺 𝑅 ℎ ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) ) |
27 |
|
mapdpglem28.ue |
⊢ ( 𝜑 → 𝑢 ∈ 𝐵 ) |
28 |
|
eqid |
⊢ ( +g ‘ 𝐶 ) = ( +g ‘ 𝐶 ) |
29 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
30 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
31 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
32 |
1 8 12
|
lcdlvec |
⊢ ( 𝜑 → 𝐶 ∈ LVec ) |
33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
mapdpglem30a |
⊢ ( 𝜑 → 𝐺 ≠ ( 0g ‘ 𝐶 ) ) |
34 |
|
eldifsn |
⊢ ( 𝐺 ∈ ( 𝐹 ∖ { ( 0g ‘ 𝐶 ) } ) ↔ ( 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ ( 0g ‘ 𝐶 ) ) ) |
35 |
15 33 34
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐹 ∖ { ( 0g ‘ 𝐶 ) } ) ) |
36 |
19
|
simpld |
⊢ ( 𝜑 → 𝑖 ∈ 𝐹 ) |
37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
mapdpglem30b |
⊢ ( 𝜑 → 𝑖 ≠ ( 0g ‘ 𝐶 ) ) |
38 |
|
eldifsn |
⊢ ( 𝑖 ∈ ( 𝐹 ∖ { ( 0g ‘ 𝐶 ) } ) ↔ ( 𝑖 ∈ 𝐹 ∧ 𝑖 ≠ ( 0g ‘ 𝐶 ) ) ) |
39 |
36 37 38
|
sylanbrc |
⊢ ( 𝜑 → 𝑖 ∈ ( 𝐹 ∖ { ( 0g ‘ 𝐶 ) } ) ) |
40 |
1 3 20 21 8 29 30 12
|
lcdsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐵 ) |
41 |
24 40
|
eleqtrrd |
⊢ ( 𝜑 → 𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
42 |
1 3 12
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
43 |
20
|
lmodring |
⊢ ( 𝑈 ∈ LMod → 𝐴 ∈ Ring ) |
44 |
42 43
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ Ring ) |
45 |
|
ringgrp |
⊢ ( 𝐴 ∈ Ring → 𝐴 ∈ Grp ) |
46 |
44 45
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ Grp ) |
47 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
48 |
21 47
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
49 |
44 48
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
50 |
|
eqid |
⊢ ( invg ‘ 𝐴 ) = ( invg ‘ 𝐴 ) |
51 |
21 50
|
grpinvcl |
⊢ ( ( 𝐴 ∈ Grp ∧ ( 1r ‘ 𝐴 ) ∈ 𝐵 ) → ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ∈ 𝐵 ) |
52 |
46 49 51
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ∈ 𝐵 ) |
53 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
54 |
21 53
|
ringcl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑣 ∈ 𝐵 ∧ ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ∈ 𝐵 ) → ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) ∈ 𝐵 ) |
55 |
44 24 52 54
|
syl3anc |
⊢ ( 𝜑 → ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) ∈ 𝐵 ) |
56 |
55 40
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
57 |
49 40
|
eleqtrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
58 |
21 53
|
ringcl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑢 ∈ 𝐵 ∧ ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ∈ 𝐵 ) → ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) ∈ 𝐵 ) |
59 |
44 27 52 58
|
syl3anc |
⊢ ( 𝜑 → ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) ∈ 𝐵 ) |
60 |
59 40
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
mapdpglem29 |
⊢ ( 𝜑 → ( 𝐽 ‘ { 𝐺 } ) ≠ ( 𝐽 ‘ { 𝑖 } ) ) |
62 |
1 3 20 21 53 8 9 22 12 52 27 36
|
lcdvsass |
⊢ ( 𝜑 → ( ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) · 𝑖 ) = ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) · ( 𝑢 · 𝑖 ) ) ) |
63 |
62
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 1r ‘ 𝐴 ) · 𝐺 ) ( +g ‘ 𝐶 ) ( ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) · 𝑖 ) ) = ( ( ( 1r ‘ 𝐴 ) · 𝐺 ) ( +g ‘ 𝐶 ) ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) · ( 𝑢 · 𝑖 ) ) ) ) |
64 |
1 3 20 21 8 9 22 12 49 15
|
lcdvscl |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐴 ) · 𝐺 ) ∈ 𝐹 ) |
65 |
1 3 20 21 8 9 22 12 27 36
|
lcdvscl |
⊢ ( 𝜑 → ( 𝑢 · 𝑖 ) ∈ 𝐹 ) |
66 |
1 3 20 50 47 8 9 28 22 10 12 64 65
|
lcdvsub |
⊢ ( 𝜑 → ( ( ( 1r ‘ 𝐴 ) · 𝐺 ) 𝑅 ( 𝑢 · 𝑖 ) ) = ( ( ( 1r ‘ 𝐴 ) · 𝐺 ) ( +g ‘ 𝐶 ) ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) · ( 𝑢 · 𝑖 ) ) ) ) |
67 |
1 3 20 21 53 8 9 22 12 52 24 36
|
lcdvsass |
⊢ ( 𝜑 → ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) · 𝑖 ) = ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) · ( 𝑣 · 𝑖 ) ) ) |
68 |
67
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑣 · 𝐺 ) ( +g ‘ 𝐶 ) ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) · 𝑖 ) ) = ( ( 𝑣 · 𝐺 ) ( +g ‘ 𝐶 ) ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) · ( 𝑣 · 𝑖 ) ) ) ) |
69 |
1 3 20 21 8 9 22 12 24 15
|
lcdvscl |
⊢ ( 𝜑 → ( 𝑣 · 𝐺 ) ∈ 𝐹 ) |
70 |
1 3 20 21 8 9 22 12 24 36
|
lcdvscl |
⊢ ( 𝜑 → ( 𝑣 · 𝑖 ) ∈ 𝐹 ) |
71 |
1 3 20 50 47 8 9 28 22 10 12 69 70
|
lcdvsub |
⊢ ( 𝜑 → ( ( 𝑣 · 𝐺 ) 𝑅 ( 𝑣 · 𝑖 ) ) = ( ( 𝑣 · 𝐺 ) ( +g ‘ 𝐶 ) ( ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) · ( 𝑣 · 𝑖 ) ) ) ) |
72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
mapdpglem28 |
⊢ ( 𝜑 → ( ( 𝑣 · 𝐺 ) 𝑅 ( 𝑣 · 𝑖 ) ) = ( 𝐺 𝑅 ( 𝑢 · 𝑖 ) ) ) |
73 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ ( Scalar ‘ 𝐶 ) ) |
74 |
1 3 20 47 8 29 73 12
|
lcd1 |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ 𝐴 ) ) |
75 |
74
|
oveq1d |
⊢ ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) = ( ( 1r ‘ 𝐴 ) · 𝐺 ) ) |
76 |
1 8 12
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
77 |
9 29 22 73
|
lmodvs1 |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) = 𝐺 ) |
78 |
76 15 77
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) = 𝐺 ) |
79 |
75 78
|
eqtr3d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐴 ) · 𝐺 ) = 𝐺 ) |
80 |
79
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1r ‘ 𝐴 ) · 𝐺 ) 𝑅 ( 𝑢 · 𝑖 ) ) = ( 𝐺 𝑅 ( 𝑢 · 𝑖 ) ) ) |
81 |
72 80
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑣 · 𝐺 ) 𝑅 ( 𝑣 · 𝑖 ) ) = ( ( ( 1r ‘ 𝐴 ) · 𝐺 ) 𝑅 ( 𝑢 · 𝑖 ) ) ) |
82 |
68 71 81
|
3eqtr2rd |
⊢ ( 𝜑 → ( ( ( 1r ‘ 𝐴 ) · 𝐺 ) 𝑅 ( 𝑢 · 𝑖 ) ) = ( ( 𝑣 · 𝐺 ) ( +g ‘ 𝐶 ) ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) · 𝑖 ) ) ) |
83 |
63 66 82
|
3eqtr2rd |
⊢ ( 𝜑 → ( ( 𝑣 · 𝐺 ) ( +g ‘ 𝐶 ) ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) · 𝑖 ) ) = ( ( ( 1r ‘ 𝐴 ) · 𝐺 ) ( +g ‘ 𝐶 ) ( ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) · 𝑖 ) ) ) |
84 |
9 28 29 30 22 31 11 32 35 39 41 56 57 60 61 83
|
lvecindp2 |
⊢ ( 𝜑 → ( 𝑣 = ( 1r ‘ 𝐴 ) ∧ ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) = ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) ) ) |
85 |
21 53 47 50 44 24
|
rngnegr |
⊢ ( 𝜑 → ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) = ( ( invg ‘ 𝐴 ) ‘ 𝑣 ) ) |
86 |
21 53 47 50 44 27
|
rngnegr |
⊢ ( 𝜑 → ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) = ( ( invg ‘ 𝐴 ) ‘ 𝑢 ) ) |
87 |
85 86
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) = ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) ↔ ( ( invg ‘ 𝐴 ) ‘ 𝑣 ) = ( ( invg ‘ 𝐴 ) ‘ 𝑢 ) ) ) |
88 |
21 50 46 24 27
|
grpinv11 |
⊢ ( 𝜑 → ( ( ( invg ‘ 𝐴 ) ‘ 𝑣 ) = ( ( invg ‘ 𝐴 ) ‘ 𝑢 ) ↔ 𝑣 = 𝑢 ) ) |
89 |
87 88
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) = ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) ↔ 𝑣 = 𝑢 ) ) |
90 |
89
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑣 = ( 1r ‘ 𝐴 ) ∧ ( 𝑣 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) = ( 𝑢 ( .r ‘ 𝐴 ) ( ( invg ‘ 𝐴 ) ‘ ( 1r ‘ 𝐴 ) ) ) ) ↔ ( 𝑣 = ( 1r ‘ 𝐴 ) ∧ 𝑣 = 𝑢 ) ) ) |
91 |
84 90
|
mpbid |
⊢ ( 𝜑 → ( 𝑣 = ( 1r ‘ 𝐴 ) ∧ 𝑣 = 𝑢 ) ) |