Metamath Proof Explorer


Theorem mapdpglem30

Description: Lemma for mapdpg . Baer p. 45 line 18: "Hence we deduce (from mapdpglem28 , using lvecindp2 ) that v = 1 and v = u...". TODO: would it be shorter to have only the v = ( 1rA ) part and use mapdpglem28.u2 in mapdpglem31 ? (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdpg.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.v 𝑉 = ( Base ‘ 𝑈 )
mapdpg.s = ( -g𝑈 )
mapdpg.z 0 = ( 0g𝑈 )
mapdpg.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdpg.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.f 𝐹 = ( Base ‘ 𝐶 )
mapdpg.r 𝑅 = ( -g𝐶 )
mapdpg.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdpg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdpg.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdpg.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
mapdpg.g ( 𝜑𝐺𝐹 )
mapdpg.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
mapdpg.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
mapdpgem25.h1 ( 𝜑 → ( 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ) } ) ) ) )
mapdpgem25.i1 ( 𝜑 → ( 𝑖𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )
mapdpglem26.a 𝐴 = ( Scalar ‘ 𝑈 )
mapdpglem26.b 𝐵 = ( Base ‘ 𝐴 )
mapdpglem26.t · = ( ·𝑠𝐶 )
mapdpglem26.o 𝑂 = ( 0g𝐴 )
mapdpglem28.ve ( 𝜑𝑣𝐵 )
mapdpglem28.u1 ( 𝜑 = ( 𝑢 · 𝑖 ) )
mapdpglem28.u2 ( 𝜑 → ( 𝐺 𝑅 ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) )
mapdpglem28.ue ( 𝜑𝑢𝐵 )
Assertion mapdpglem30 ( 𝜑 → ( 𝑣 = ( 1r𝐴 ) ∧ 𝑣 = 𝑢 ) )

Proof

Step Hyp Ref Expression
1 mapdpg.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdpg.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdpg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdpg.v 𝑉 = ( Base ‘ 𝑈 )
5 mapdpg.s = ( -g𝑈 )
6 mapdpg.z 0 = ( 0g𝑈 )
7 mapdpg.n 𝑁 = ( LSpan ‘ 𝑈 )
8 mapdpg.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
9 mapdpg.f 𝐹 = ( Base ‘ 𝐶 )
10 mapdpg.r 𝑅 = ( -g𝐶 )
11 mapdpg.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdpg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 mapdpg.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
14 mapdpg.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
15 mapdpg.g ( 𝜑𝐺𝐹 )
16 mapdpg.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
17 mapdpg.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
18 mapdpgem25.h1 ( 𝜑 → ( 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ) } ) ) ) )
19 mapdpgem25.i1 ( 𝜑 → ( 𝑖𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) )
20 mapdpglem26.a 𝐴 = ( Scalar ‘ 𝑈 )
21 mapdpglem26.b 𝐵 = ( Base ‘ 𝐴 )
22 mapdpglem26.t · = ( ·𝑠𝐶 )
23 mapdpglem26.o 𝑂 = ( 0g𝐴 )
24 mapdpglem28.ve ( 𝜑𝑣𝐵 )
25 mapdpglem28.u1 ( 𝜑 = ( 𝑢 · 𝑖 ) )
26 mapdpglem28.u2 ( 𝜑 → ( 𝐺 𝑅 ) = ( 𝑣 · ( 𝐺 𝑅 𝑖 ) ) )
27 mapdpglem28.ue ( 𝜑𝑢𝐵 )
28 eqid ( +g𝐶 ) = ( +g𝐶 )
29 eqid ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 )
30 eqid ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) )
31 eqid ( 0g𝐶 ) = ( 0g𝐶 )
32 1 8 12 lcdlvec ( 𝜑𝐶 ∈ LVec )
33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 mapdpglem30a ( 𝜑𝐺 ≠ ( 0g𝐶 ) )
34 eldifsn ( 𝐺 ∈ ( 𝐹 ∖ { ( 0g𝐶 ) } ) ↔ ( 𝐺𝐹𝐺 ≠ ( 0g𝐶 ) ) )
35 15 33 34 sylanbrc ( 𝜑𝐺 ∈ ( 𝐹 ∖ { ( 0g𝐶 ) } ) )
36 19 simpld ( 𝜑𝑖𝐹 )
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 mapdpglem30b ( 𝜑𝑖 ≠ ( 0g𝐶 ) )
38 eldifsn ( 𝑖 ∈ ( 𝐹 ∖ { ( 0g𝐶 ) } ) ↔ ( 𝑖𝐹𝑖 ≠ ( 0g𝐶 ) ) )
39 36 37 38 sylanbrc ( 𝜑𝑖 ∈ ( 𝐹 ∖ { ( 0g𝐶 ) } ) )
40 1 3 20 21 8 29 30 12 lcdsbase ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐵 )
41 24 40 eleqtrrd ( 𝜑𝑣 ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
42 1 3 12 dvhlmod ( 𝜑𝑈 ∈ LMod )
43 20 lmodring ( 𝑈 ∈ LMod → 𝐴 ∈ Ring )
44 42 43 syl ( 𝜑𝐴 ∈ Ring )
45 ringgrp ( 𝐴 ∈ Ring → 𝐴 ∈ Grp )
46 44 45 syl ( 𝜑𝐴 ∈ Grp )
47 eqid ( 1r𝐴 ) = ( 1r𝐴 )
48 21 47 ringidcl ( 𝐴 ∈ Ring → ( 1r𝐴 ) ∈ 𝐵 )
49 44 48 syl ( 𝜑 → ( 1r𝐴 ) ∈ 𝐵 )
50 eqid ( invg𝐴 ) = ( invg𝐴 )
51 21 50 grpinvcl ( ( 𝐴 ∈ Grp ∧ ( 1r𝐴 ) ∈ 𝐵 ) → ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ∈ 𝐵 )
52 46 49 51 syl2anc ( 𝜑 → ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ∈ 𝐵 )
53 eqid ( .r𝐴 ) = ( .r𝐴 )
54 21 53 ringcl ( ( 𝐴 ∈ Ring ∧ 𝑣𝐵 ∧ ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ∈ 𝐵 ) → ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) ∈ 𝐵 )
55 44 24 52 54 syl3anc ( 𝜑 → ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) ∈ 𝐵 )
56 55 40 eleqtrrd ( 𝜑 → ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
57 49 40 eleqtrrd ( 𝜑 → ( 1r𝐴 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
58 21 53 ringcl ( ( 𝐴 ∈ Ring ∧ 𝑢𝐵 ∧ ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ∈ 𝐵 ) → ( 𝑢 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) ∈ 𝐵 )
59 44 27 52 58 syl3anc ( 𝜑 → ( 𝑢 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) ∈ 𝐵 )
60 59 40 eleqtrrd ( 𝜑 → ( 𝑢 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) )
61 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 mapdpglem29 ( 𝜑 → ( 𝐽 ‘ { 𝐺 } ) ≠ ( 𝐽 ‘ { 𝑖 } ) )
62 1 3 20 21 53 8 9 22 12 52 27 36 lcdvsass ( 𝜑 → ( ( 𝑢 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) · 𝑖 ) = ( ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) · ( 𝑢 · 𝑖 ) ) )
63 62 oveq2d ( 𝜑 → ( ( ( 1r𝐴 ) · 𝐺 ) ( +g𝐶 ) ( ( 𝑢 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) · 𝑖 ) ) = ( ( ( 1r𝐴 ) · 𝐺 ) ( +g𝐶 ) ( ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) · ( 𝑢 · 𝑖 ) ) ) )
64 1 3 20 21 8 9 22 12 49 15 lcdvscl ( 𝜑 → ( ( 1r𝐴 ) · 𝐺 ) ∈ 𝐹 )
65 1 3 20 21 8 9 22 12 27 36 lcdvscl ( 𝜑 → ( 𝑢 · 𝑖 ) ∈ 𝐹 )
66 1 3 20 50 47 8 9 28 22 10 12 64 65 lcdvsub ( 𝜑 → ( ( ( 1r𝐴 ) · 𝐺 ) 𝑅 ( 𝑢 · 𝑖 ) ) = ( ( ( 1r𝐴 ) · 𝐺 ) ( +g𝐶 ) ( ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) · ( 𝑢 · 𝑖 ) ) ) )
67 1 3 20 21 53 8 9 22 12 52 24 36 lcdvsass ( 𝜑 → ( ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) · 𝑖 ) = ( ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) · ( 𝑣 · 𝑖 ) ) )
68 67 oveq2d ( 𝜑 → ( ( 𝑣 · 𝐺 ) ( +g𝐶 ) ( ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) · 𝑖 ) ) = ( ( 𝑣 · 𝐺 ) ( +g𝐶 ) ( ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) · ( 𝑣 · 𝑖 ) ) ) )
69 1 3 20 21 8 9 22 12 24 15 lcdvscl ( 𝜑 → ( 𝑣 · 𝐺 ) ∈ 𝐹 )
70 1 3 20 21 8 9 22 12 24 36 lcdvscl ( 𝜑 → ( 𝑣 · 𝑖 ) ∈ 𝐹 )
71 1 3 20 50 47 8 9 28 22 10 12 69 70 lcdvsub ( 𝜑 → ( ( 𝑣 · 𝐺 ) 𝑅 ( 𝑣 · 𝑖 ) ) = ( ( 𝑣 · 𝐺 ) ( +g𝐶 ) ( ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) · ( 𝑣 · 𝑖 ) ) ) )
72 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 mapdpglem28 ( 𝜑 → ( ( 𝑣 · 𝐺 ) 𝑅 ( 𝑣 · 𝑖 ) ) = ( 𝐺 𝑅 ( 𝑢 · 𝑖 ) ) )
73 eqid ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ ( Scalar ‘ 𝐶 ) )
74 1 3 20 47 8 29 73 12 lcd1 ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r𝐴 ) )
75 74 oveq1d ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) = ( ( 1r𝐴 ) · 𝐺 ) )
76 1 8 12 lcdlmod ( 𝜑𝐶 ∈ LMod )
77 9 29 22 73 lmodvs1 ( ( 𝐶 ∈ LMod ∧ 𝐺𝐹 ) → ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) = 𝐺 )
78 76 15 77 syl2anc ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) = 𝐺 )
79 75 78 eqtr3d ( 𝜑 → ( ( 1r𝐴 ) · 𝐺 ) = 𝐺 )
80 79 oveq1d ( 𝜑 → ( ( ( 1r𝐴 ) · 𝐺 ) 𝑅 ( 𝑢 · 𝑖 ) ) = ( 𝐺 𝑅 ( 𝑢 · 𝑖 ) ) )
81 72 80 eqtr4d ( 𝜑 → ( ( 𝑣 · 𝐺 ) 𝑅 ( 𝑣 · 𝑖 ) ) = ( ( ( 1r𝐴 ) · 𝐺 ) 𝑅 ( 𝑢 · 𝑖 ) ) )
82 68 71 81 3eqtr2rd ( 𝜑 → ( ( ( 1r𝐴 ) · 𝐺 ) 𝑅 ( 𝑢 · 𝑖 ) ) = ( ( 𝑣 · 𝐺 ) ( +g𝐶 ) ( ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) · 𝑖 ) ) )
83 63 66 82 3eqtr2rd ( 𝜑 → ( ( 𝑣 · 𝐺 ) ( +g𝐶 ) ( ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) · 𝑖 ) ) = ( ( ( 1r𝐴 ) · 𝐺 ) ( +g𝐶 ) ( ( 𝑢 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) · 𝑖 ) ) )
84 9 28 29 30 22 31 11 32 35 39 41 56 57 60 61 83 lvecindp2 ( 𝜑 → ( 𝑣 = ( 1r𝐴 ) ∧ ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) = ( 𝑢 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) ) )
85 21 53 47 50 44 24 rngnegr ( 𝜑 → ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) = ( ( invg𝐴 ) ‘ 𝑣 ) )
86 21 53 47 50 44 27 rngnegr ( 𝜑 → ( 𝑢 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) = ( ( invg𝐴 ) ‘ 𝑢 ) )
87 85 86 eqeq12d ( 𝜑 → ( ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) = ( 𝑢 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) ↔ ( ( invg𝐴 ) ‘ 𝑣 ) = ( ( invg𝐴 ) ‘ 𝑢 ) ) )
88 21 50 46 24 27 grpinv11 ( 𝜑 → ( ( ( invg𝐴 ) ‘ 𝑣 ) = ( ( invg𝐴 ) ‘ 𝑢 ) ↔ 𝑣 = 𝑢 ) )
89 87 88 bitrd ( 𝜑 → ( ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) = ( 𝑢 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) ↔ 𝑣 = 𝑢 ) )
90 89 anbi2d ( 𝜑 → ( ( 𝑣 = ( 1r𝐴 ) ∧ ( 𝑣 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) = ( 𝑢 ( .r𝐴 ) ( ( invg𝐴 ) ‘ ( 1r𝐴 ) ) ) ) ↔ ( 𝑣 = ( 1r𝐴 ) ∧ 𝑣 = 𝑢 ) ) )
91 84 90 mpbid ( 𝜑 → ( 𝑣 = ( 1r𝐴 ) ∧ 𝑣 = 𝑢 ) )