| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpg.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdpg.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdpg.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdpg.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | mapdpg.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 6 |  | mapdpg.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 7 |  | mapdpg.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | mapdpg.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | mapdpg.f | ⊢ 𝐹  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | mapdpg.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 11 |  | mapdpg.j | ⊢ 𝐽  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | mapdpg.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | mapdpg.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 14 |  | mapdpg.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 15 |  | mapdpg.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 16 |  | mapdpg.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 17 |  | mapdpg.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 18 |  | mapdpgem25.h1 | ⊢ ( 𝜑  →  ( ℎ  ∈  𝐹  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) | 
						
							| 19 |  | mapdpgem25.i1 | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝐹  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) | 
						
							| 20 |  | mapdpglem26.a | ⊢ 𝐴  =  ( Scalar ‘ 𝑈 ) | 
						
							| 21 |  | mapdpglem26.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 22 |  | mapdpglem26.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 23 |  | mapdpglem26.o | ⊢ 𝑂  =  ( 0g ‘ 𝐴 ) | 
						
							| 24 |  | mapdpglem28.ve | ⊢ ( 𝜑  →  𝑣  ∈  𝐵 ) | 
						
							| 25 |  | mapdpglem28.u1 | ⊢ ( 𝜑  →  ℎ  =  ( 𝑢  ·  𝑖 ) ) | 
						
							| 26 |  | mapdpglem28.u2 | ⊢ ( 𝜑  →  ( 𝐺 𝑅 ℎ )  =  ( 𝑣  ·  ( 𝐺 𝑅 𝑖 ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 28 | 1 3 12 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 29 | 13 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 30 | 4 27 7 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 31 | 28 29 30 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 32 | 14 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 33 | 4 27 7 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 34 | 28 32 33 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 35 | 1 3 27 2 12 31 34 | mapd11 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  ↔  ( 𝑁 ‘ { 𝑋 } )  =  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 36 | 35 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  ≠  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  ↔  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 37 | 16 36 | mpbird | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  ≠  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 38 | 19 | simprd | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) | 
						
							| 39 | 38 | simpld | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝑖 } ) ) | 
						
							| 40 | 37 17 39 | 3netr3d | ⊢ ( 𝜑  →  ( 𝐽 ‘ { 𝐺 } )  ≠  ( 𝐽 ‘ { 𝑖 } ) ) |