Metamath Proof Explorer


Theorem mapdpglem29

Description: Lemma for mapdpg . Baer p. 45 line 16: "But Gx' and Gy'' are distinct points and so x' and y'' are independent elements in B. (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H=LHypK
mapdpg.m M=mapdKW
mapdpg.u U=DVecHKW
mapdpg.v V=BaseU
mapdpg.s -˙=-U
mapdpg.z 0˙=0U
mapdpg.n N=LSpanU
mapdpg.c C=LCDualKW
mapdpg.f F=BaseC
mapdpg.r R=-C
mapdpg.j J=LSpanC
mapdpg.k φKHLWH
mapdpg.x φXV0˙
mapdpg.y φYV0˙
mapdpg.g φGF
mapdpg.ne φNXNY
mapdpg.e φMNX=JG
mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
mapdpglem26.a A=ScalarU
mapdpglem26.b B=BaseA
mapdpglem26.t ·˙=C
mapdpglem26.o O=0A
mapdpglem28.ve φvB
mapdpglem28.u1 φh=u·˙i
mapdpglem28.u2 φGRh=v·˙GRi
Assertion mapdpglem29 φJGJi

Proof

Step Hyp Ref Expression
1 mapdpg.h H=LHypK
2 mapdpg.m M=mapdKW
3 mapdpg.u U=DVecHKW
4 mapdpg.v V=BaseU
5 mapdpg.s -˙=-U
6 mapdpg.z 0˙=0U
7 mapdpg.n N=LSpanU
8 mapdpg.c C=LCDualKW
9 mapdpg.f F=BaseC
10 mapdpg.r R=-C
11 mapdpg.j J=LSpanC
12 mapdpg.k φKHLWH
13 mapdpg.x φXV0˙
14 mapdpg.y φYV0˙
15 mapdpg.g φGF
16 mapdpg.ne φNXNY
17 mapdpg.e φMNX=JG
18 mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
19 mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
20 mapdpglem26.a A=ScalarU
21 mapdpglem26.b B=BaseA
22 mapdpglem26.t ·˙=C
23 mapdpglem26.o O=0A
24 mapdpglem28.ve φvB
25 mapdpglem28.u1 φh=u·˙i
26 mapdpglem28.u2 φGRh=v·˙GRi
27 eqid LSubSpU=LSubSpU
28 1 3 12 dvhlmod φULMod
29 13 eldifad φXV
30 4 27 7 lspsncl ULModXVNXLSubSpU
31 28 29 30 syl2anc φNXLSubSpU
32 14 eldifad φYV
33 4 27 7 lspsncl ULModYVNYLSubSpU
34 28 32 33 syl2anc φNYLSubSpU
35 1 3 27 2 12 31 34 mapd11 φMNX=MNYNX=NY
36 35 necon3bid φMNXMNYNXNY
37 16 36 mpbird φMNXMNY
38 19 simprd φMNY=JiMNX-˙Y=JGRi
39 38 simpld φMNY=Ji
40 37 17 39 3netr3d φJGJi