Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpg.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdpg.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdpg.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdpg.v |
|- V = ( Base ` U ) |
5 |
|
mapdpg.s |
|- .- = ( -g ` U ) |
6 |
|
mapdpg.z |
|- .0. = ( 0g ` U ) |
7 |
|
mapdpg.n |
|- N = ( LSpan ` U ) |
8 |
|
mapdpg.c |
|- C = ( ( LCDual ` K ) ` W ) |
9 |
|
mapdpg.f |
|- F = ( Base ` C ) |
10 |
|
mapdpg.r |
|- R = ( -g ` C ) |
11 |
|
mapdpg.j |
|- J = ( LSpan ` C ) |
12 |
|
mapdpg.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
13 |
|
mapdpg.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
14 |
|
mapdpg.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
15 |
|
mapdpg.g |
|- ( ph -> G e. F ) |
16 |
|
mapdpg.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
17 |
|
mapdpg.e |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) |
18 |
|
mapdpgem25.h1 |
|- ( ph -> ( h e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) ) |
19 |
|
mapdpgem25.i1 |
|- ( ph -> ( i e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) ) |
20 |
|
mapdpglem26.a |
|- A = ( Scalar ` U ) |
21 |
|
mapdpglem26.b |
|- B = ( Base ` A ) |
22 |
|
mapdpglem26.t |
|- .x. = ( .s ` C ) |
23 |
|
mapdpglem26.o |
|- O = ( 0g ` A ) |
24 |
|
mapdpglem28.ve |
|- ( ph -> v e. B ) |
25 |
|
mapdpglem28.u1 |
|- ( ph -> h = ( u .x. i ) ) |
26 |
|
mapdpglem28.u2 |
|- ( ph -> ( G R h ) = ( v .x. ( G R i ) ) ) |
27 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
28 |
1 3 12
|
dvhlmod |
|- ( ph -> U e. LMod ) |
29 |
13
|
eldifad |
|- ( ph -> X e. V ) |
30 |
4 27 7
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
31 |
28 29 30
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
32 |
14
|
eldifad |
|- ( ph -> Y e. V ) |
33 |
4 27 7
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
34 |
28 32 33
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
35 |
1 3 27 2 12 31 34
|
mapd11 |
|- ( ph -> ( ( M ` ( N ` { X } ) ) = ( M ` ( N ` { Y } ) ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) |
36 |
35
|
necon3bid |
|- ( ph -> ( ( M ` ( N ` { X } ) ) =/= ( M ` ( N ` { Y } ) ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) ) |
37 |
16 36
|
mpbird |
|- ( ph -> ( M ` ( N ` { X } ) ) =/= ( M ` ( N ` { Y } ) ) ) |
38 |
19
|
simprd |
|- ( ph -> ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) |
39 |
38
|
simpld |
|- ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { i } ) ) |
40 |
37 17 39
|
3netr3d |
|- ( ph -> ( J ` { G } ) =/= ( J ` { i } ) ) |