Metamath Proof Explorer


Theorem mapdpglem29

Description: Lemma for mapdpg . Baer p. 45 line 16: "But Gx' and Gy'' are distinct points and so x' and y'' are independent elements in B. (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h
|- H = ( LHyp ` K )
mapdpg.m
|- M = ( ( mapd ` K ) ` W )
mapdpg.u
|- U = ( ( DVecH ` K ) ` W )
mapdpg.v
|- V = ( Base ` U )
mapdpg.s
|- .- = ( -g ` U )
mapdpg.z
|- .0. = ( 0g ` U )
mapdpg.n
|- N = ( LSpan ` U )
mapdpg.c
|- C = ( ( LCDual ` K ) ` W )
mapdpg.f
|- F = ( Base ` C )
mapdpg.r
|- R = ( -g ` C )
mapdpg.j
|- J = ( LSpan ` C )
mapdpg.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdpg.x
|- ( ph -> X e. ( V \ { .0. } ) )
mapdpg.y
|- ( ph -> Y e. ( V \ { .0. } ) )
mapdpg.g
|- ( ph -> G e. F )
mapdpg.ne
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
mapdpg.e
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) )
mapdpgem25.h1
|- ( ph -> ( h e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) )
mapdpgem25.i1
|- ( ph -> ( i e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) )
mapdpglem26.a
|- A = ( Scalar ` U )
mapdpglem26.b
|- B = ( Base ` A )
mapdpglem26.t
|- .x. = ( .s ` C )
mapdpglem26.o
|- O = ( 0g ` A )
mapdpglem28.ve
|- ( ph -> v e. B )
mapdpglem28.u1
|- ( ph -> h = ( u .x. i ) )
mapdpglem28.u2
|- ( ph -> ( G R h ) = ( v .x. ( G R i ) ) )
Assertion mapdpglem29
|- ( ph -> ( J ` { G } ) =/= ( J ` { i } ) )

Proof

Step Hyp Ref Expression
1 mapdpg.h
 |-  H = ( LHyp ` K )
2 mapdpg.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdpg.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdpg.v
 |-  V = ( Base ` U )
5 mapdpg.s
 |-  .- = ( -g ` U )
6 mapdpg.z
 |-  .0. = ( 0g ` U )
7 mapdpg.n
 |-  N = ( LSpan ` U )
8 mapdpg.c
 |-  C = ( ( LCDual ` K ) ` W )
9 mapdpg.f
 |-  F = ( Base ` C )
10 mapdpg.r
 |-  R = ( -g ` C )
11 mapdpg.j
 |-  J = ( LSpan ` C )
12 mapdpg.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
13 mapdpg.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
14 mapdpg.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
15 mapdpg.g
 |-  ( ph -> G e. F )
16 mapdpg.ne
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
17 mapdpg.e
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) )
18 mapdpgem25.h1
 |-  ( ph -> ( h e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) )
19 mapdpgem25.i1
 |-  ( ph -> ( i e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) )
20 mapdpglem26.a
 |-  A = ( Scalar ` U )
21 mapdpglem26.b
 |-  B = ( Base ` A )
22 mapdpglem26.t
 |-  .x. = ( .s ` C )
23 mapdpglem26.o
 |-  O = ( 0g ` A )
24 mapdpglem28.ve
 |-  ( ph -> v e. B )
25 mapdpglem28.u1
 |-  ( ph -> h = ( u .x. i ) )
26 mapdpglem28.u2
 |-  ( ph -> ( G R h ) = ( v .x. ( G R i ) ) )
27 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
28 1 3 12 dvhlmod
 |-  ( ph -> U e. LMod )
29 13 eldifad
 |-  ( ph -> X e. V )
30 4 27 7 lspsncl
 |-  ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) )
31 28 29 30 syl2anc
 |-  ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) )
32 14 eldifad
 |-  ( ph -> Y e. V )
33 4 27 7 lspsncl
 |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) )
34 28 32 33 syl2anc
 |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) )
35 1 3 27 2 12 31 34 mapd11
 |-  ( ph -> ( ( M ` ( N ` { X } ) ) = ( M ` ( N ` { Y } ) ) <-> ( N ` { X } ) = ( N ` { Y } ) ) )
36 35 necon3bid
 |-  ( ph -> ( ( M ` ( N ` { X } ) ) =/= ( M ` ( N ` { Y } ) ) <-> ( N ` { X } ) =/= ( N ` { Y } ) ) )
37 16 36 mpbird
 |-  ( ph -> ( M ` ( N ` { X } ) ) =/= ( M ` ( N ` { Y } ) ) )
38 19 simprd
 |-  ( ph -> ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) )
39 38 simpld
 |-  ( ph -> ( M ` ( N ` { Y } ) ) = ( J ` { i } ) )
40 37 17 39 3netr3d
 |-  ( ph -> ( J ` { G } ) =/= ( J ` { i } ) )