| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdpg.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdpg.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdpg.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
mapdpg.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
mapdpg.s |
⊢ − = ( -g ‘ 𝑈 ) |
| 6 |
|
mapdpg.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 7 |
|
mapdpg.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 8 |
|
mapdpg.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
mapdpg.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
| 10 |
|
mapdpg.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
| 11 |
|
mapdpg.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
| 12 |
|
mapdpg.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 13 |
|
mapdpg.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 14 |
|
mapdpg.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 15 |
|
mapdpg.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 16 |
|
mapdpg.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 17 |
|
mapdpg.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
| 18 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
| 19 |
|
eqid |
⊢ ( LSAtoms ‘ 𝐶 ) = ( LSAtoms ‘ 𝐶 ) |
| 20 |
1 3 12
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 21 |
4 7 6 18 20 13
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
| 22 |
1 2 3 18 8 19 12 21
|
mapdat |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSAtoms ‘ 𝐶 ) ) |
| 23 |
17 22
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐽 ‘ { 𝐺 } ) ∈ ( LSAtoms ‘ 𝐶 ) ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
| 25 |
1 8 12
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 26 |
9 11 24 19 25 15
|
lsatspn0 |
⊢ ( 𝜑 → ( ( 𝐽 ‘ { 𝐺 } ) ∈ ( LSAtoms ‘ 𝐶 ) ↔ 𝐺 ≠ ( 0g ‘ 𝐶 ) ) ) |
| 27 |
23 26
|
mpbid |
⊢ ( 𝜑 → 𝐺 ≠ ( 0g ‘ 𝐶 ) ) |