Metamath Proof Explorer


Theorem mapdpglem30a

Description: Lemma for mapdpg . (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdpg.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.v 𝑉 = ( Base ‘ 𝑈 )
mapdpg.s = ( -g𝑈 )
mapdpg.z 0 = ( 0g𝑈 )
mapdpg.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdpg.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdpg.f 𝐹 = ( Base ‘ 𝐶 )
mapdpg.r 𝑅 = ( -g𝐶 )
mapdpg.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdpg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdpg.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdpg.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
mapdpg.g ( 𝜑𝐺𝐹 )
mapdpg.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
mapdpg.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
Assertion mapdpglem30a ( 𝜑𝐺 ≠ ( 0g𝐶 ) )

Proof

Step Hyp Ref Expression
1 mapdpg.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdpg.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdpg.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdpg.v 𝑉 = ( Base ‘ 𝑈 )
5 mapdpg.s = ( -g𝑈 )
6 mapdpg.z 0 = ( 0g𝑈 )
7 mapdpg.n 𝑁 = ( LSpan ‘ 𝑈 )
8 mapdpg.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
9 mapdpg.f 𝐹 = ( Base ‘ 𝐶 )
10 mapdpg.r 𝑅 = ( -g𝐶 )
11 mapdpg.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdpg.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 mapdpg.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
14 mapdpg.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
15 mapdpg.g ( 𝜑𝐺𝐹 )
16 mapdpg.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
17 mapdpg.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
18 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
19 eqid ( LSAtoms ‘ 𝐶 ) = ( LSAtoms ‘ 𝐶 )
20 1 3 12 dvhlmod ( 𝜑𝑈 ∈ LMod )
21 4 7 6 18 20 13 lsatlspsn ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSAtoms ‘ 𝑈 ) )
22 1 2 3 18 8 19 12 21 mapdat ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSAtoms ‘ 𝐶 ) )
23 17 22 eqeltrrd ( 𝜑 → ( 𝐽 ‘ { 𝐺 } ) ∈ ( LSAtoms ‘ 𝐶 ) )
24 eqid ( 0g𝐶 ) = ( 0g𝐶 )
25 1 8 12 lcdlmod ( 𝜑𝐶 ∈ LMod )
26 9 11 24 19 25 15 lsatspn0 ( 𝜑 → ( ( 𝐽 ‘ { 𝐺 } ) ∈ ( LSAtoms ‘ 𝐶 ) ↔ 𝐺 ≠ ( 0g𝐶 ) ) )
27 23 26 mpbid ( 𝜑𝐺 ≠ ( 0g𝐶 ) )