Metamath Proof Explorer


Theorem mapdpglem30a

Description: Lemma for mapdpg . (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H = LHyp K
mapdpg.m M = mapd K W
mapdpg.u U = DVecH K W
mapdpg.v V = Base U
mapdpg.s - ˙ = - U
mapdpg.z 0 ˙ = 0 U
mapdpg.n N = LSpan U
mapdpg.c C = LCDual K W
mapdpg.f F = Base C
mapdpg.r R = - C
mapdpg.j J = LSpan C
mapdpg.k φ K HL W H
mapdpg.x φ X V 0 ˙
mapdpg.y φ Y V 0 ˙
mapdpg.g φ G F
mapdpg.ne φ N X N Y
mapdpg.e φ M N X = J G
Assertion mapdpglem30a φ G 0 C

Proof

Step Hyp Ref Expression
1 mapdpg.h H = LHyp K
2 mapdpg.m M = mapd K W
3 mapdpg.u U = DVecH K W
4 mapdpg.v V = Base U
5 mapdpg.s - ˙ = - U
6 mapdpg.z 0 ˙ = 0 U
7 mapdpg.n N = LSpan U
8 mapdpg.c C = LCDual K W
9 mapdpg.f F = Base C
10 mapdpg.r R = - C
11 mapdpg.j J = LSpan C
12 mapdpg.k φ K HL W H
13 mapdpg.x φ X V 0 ˙
14 mapdpg.y φ Y V 0 ˙
15 mapdpg.g φ G F
16 mapdpg.ne φ N X N Y
17 mapdpg.e φ M N X = J G
18 eqid LSAtoms U = LSAtoms U
19 eqid LSAtoms C = LSAtoms C
20 1 3 12 dvhlmod φ U LMod
21 4 7 6 18 20 13 lsatlspsn φ N X LSAtoms U
22 1 2 3 18 8 19 12 21 mapdat φ M N X LSAtoms C
23 17 22 eqeltrrd φ J G LSAtoms C
24 eqid 0 C = 0 C
25 1 8 12 lcdlmod φ C LMod
26 9 11 24 19 25 15 lsatspn0 φ J G LSAtoms C G 0 C
27 23 26 mpbid φ G 0 C