Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpg.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdpg.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdpg.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdpg.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
mapdpg.s |
⊢ − = ( -g ‘ 𝑈 ) |
6 |
|
mapdpg.z |
⊢ 0 = ( 0g ‘ 𝑈 ) |
7 |
|
mapdpg.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
8 |
|
mapdpg.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
mapdpg.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
10 |
|
mapdpg.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
11 |
|
mapdpg.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
mapdpg.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
mapdpg.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
14 |
|
mapdpg.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
15 |
|
mapdpg.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
16 |
|
mapdpg.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
17 |
|
mapdpg.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
18 |
|
mapdpgem25.h1 |
⊢ ( 𝜑 → ( ℎ ∈ 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) |
19 |
|
mapdpgem25.i1 |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐹 ∧ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) ) |
20 |
19
|
simprd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐺 𝑅 𝑖 ) } ) ) ) |
21 |
20
|
simpld |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝑖 } ) ) |
22 |
|
eqid |
⊢ ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 ) |
23 |
|
eqid |
⊢ ( LSAtoms ‘ 𝐶 ) = ( LSAtoms ‘ 𝐶 ) |
24 |
1 3 12
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
25 |
4 7 6 22 24 14
|
lsatlspsn |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSAtoms ‘ 𝑈 ) ) |
26 |
1 2 3 22 8 23 12 25
|
mapdat |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSAtoms ‘ 𝐶 ) ) |
27 |
21 26
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐽 ‘ { 𝑖 } ) ∈ ( LSAtoms ‘ 𝐶 ) ) |
28 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
29 |
1 8 12
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
30 |
19
|
simpld |
⊢ ( 𝜑 → 𝑖 ∈ 𝐹 ) |
31 |
9 11 28 23 29 30
|
lsatspn0 |
⊢ ( 𝜑 → ( ( 𝐽 ‘ { 𝑖 } ) ∈ ( LSAtoms ‘ 𝐶 ) ↔ 𝑖 ≠ ( 0g ‘ 𝐶 ) ) ) |
32 |
27 31
|
mpbid |
⊢ ( 𝜑 → 𝑖 ≠ ( 0g ‘ 𝐶 ) ) |