Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpg.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdpg.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdpg.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdpg.v |
|- V = ( Base ` U ) |
5 |
|
mapdpg.s |
|- .- = ( -g ` U ) |
6 |
|
mapdpg.z |
|- .0. = ( 0g ` U ) |
7 |
|
mapdpg.n |
|- N = ( LSpan ` U ) |
8 |
|
mapdpg.c |
|- C = ( ( LCDual ` K ) ` W ) |
9 |
|
mapdpg.f |
|- F = ( Base ` C ) |
10 |
|
mapdpg.r |
|- R = ( -g ` C ) |
11 |
|
mapdpg.j |
|- J = ( LSpan ` C ) |
12 |
|
mapdpg.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
13 |
|
mapdpg.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
14 |
|
mapdpg.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
15 |
|
mapdpg.g |
|- ( ph -> G e. F ) |
16 |
|
mapdpg.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
17 |
|
mapdpg.e |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) |
18 |
|
mapdpgem25.h1 |
|- ( ph -> ( h e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) ) |
19 |
|
mapdpgem25.i1 |
|- ( ph -> ( i e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) ) |
20 |
|
mapdpglem26.a |
|- A = ( Scalar ` U ) |
21 |
|
mapdpglem26.b |
|- B = ( Base ` A ) |
22 |
|
mapdpglem26.t |
|- .x. = ( .s ` C ) |
23 |
|
mapdpglem26.o |
|- O = ( 0g ` A ) |
24 |
|
mapdpglem28.ve |
|- ( ph -> v e. B ) |
25 |
|
mapdpglem28.u1 |
|- ( ph -> h = ( u .x. i ) ) |
26 |
|
mapdpglem28.u2 |
|- ( ph -> ( G R h ) = ( v .x. ( G R i ) ) ) |
27 |
|
mapdpglem28.ue |
|- ( ph -> u e. B ) |
28 |
|
eqid |
|- ( +g ` C ) = ( +g ` C ) |
29 |
|
eqid |
|- ( Scalar ` C ) = ( Scalar ` C ) |
30 |
|
eqid |
|- ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) |
31 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
32 |
1 8 12
|
lcdlvec |
|- ( ph -> C e. LVec ) |
33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
mapdpglem30a |
|- ( ph -> G =/= ( 0g ` C ) ) |
34 |
|
eldifsn |
|- ( G e. ( F \ { ( 0g ` C ) } ) <-> ( G e. F /\ G =/= ( 0g ` C ) ) ) |
35 |
15 33 34
|
sylanbrc |
|- ( ph -> G e. ( F \ { ( 0g ` C ) } ) ) |
36 |
19
|
simpld |
|- ( ph -> i e. F ) |
37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
mapdpglem30b |
|- ( ph -> i =/= ( 0g ` C ) ) |
38 |
|
eldifsn |
|- ( i e. ( F \ { ( 0g ` C ) } ) <-> ( i e. F /\ i =/= ( 0g ` C ) ) ) |
39 |
36 37 38
|
sylanbrc |
|- ( ph -> i e. ( F \ { ( 0g ` C ) } ) ) |
40 |
1 3 20 21 8 29 30 12
|
lcdsbase |
|- ( ph -> ( Base ` ( Scalar ` C ) ) = B ) |
41 |
24 40
|
eleqtrrd |
|- ( ph -> v e. ( Base ` ( Scalar ` C ) ) ) |
42 |
1 3 12
|
dvhlmod |
|- ( ph -> U e. LMod ) |
43 |
20
|
lmodring |
|- ( U e. LMod -> A e. Ring ) |
44 |
42 43
|
syl |
|- ( ph -> A e. Ring ) |
45 |
|
ringgrp |
|- ( A e. Ring -> A e. Grp ) |
46 |
44 45
|
syl |
|- ( ph -> A e. Grp ) |
47 |
|
eqid |
|- ( 1r ` A ) = ( 1r ` A ) |
48 |
21 47
|
ringidcl |
|- ( A e. Ring -> ( 1r ` A ) e. B ) |
49 |
44 48
|
syl |
|- ( ph -> ( 1r ` A ) e. B ) |
50 |
|
eqid |
|- ( invg ` A ) = ( invg ` A ) |
51 |
21 50
|
grpinvcl |
|- ( ( A e. Grp /\ ( 1r ` A ) e. B ) -> ( ( invg ` A ) ` ( 1r ` A ) ) e. B ) |
52 |
46 49 51
|
syl2anc |
|- ( ph -> ( ( invg ` A ) ` ( 1r ` A ) ) e. B ) |
53 |
|
eqid |
|- ( .r ` A ) = ( .r ` A ) |
54 |
21 53
|
ringcl |
|- ( ( A e. Ring /\ v e. B /\ ( ( invg ` A ) ` ( 1r ` A ) ) e. B ) -> ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. B ) |
55 |
44 24 52 54
|
syl3anc |
|- ( ph -> ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. B ) |
56 |
55 40
|
eleqtrrd |
|- ( ph -> ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. ( Base ` ( Scalar ` C ) ) ) |
57 |
49 40
|
eleqtrrd |
|- ( ph -> ( 1r ` A ) e. ( Base ` ( Scalar ` C ) ) ) |
58 |
21 53
|
ringcl |
|- ( ( A e. Ring /\ u e. B /\ ( ( invg ` A ) ` ( 1r ` A ) ) e. B ) -> ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. B ) |
59 |
44 27 52 58
|
syl3anc |
|- ( ph -> ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. B ) |
60 |
59 40
|
eleqtrrd |
|- ( ph -> ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. ( Base ` ( Scalar ` C ) ) ) |
61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
mapdpglem29 |
|- ( ph -> ( J ` { G } ) =/= ( J ` { i } ) ) |
62 |
1 3 20 21 53 8 9 22 12 52 27 36
|
lcdvsass |
|- ( ph -> ( ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) = ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( u .x. i ) ) ) |
63 |
62
|
oveq2d |
|- ( ph -> ( ( ( 1r ` A ) .x. G ) ( +g ` C ) ( ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) ) = ( ( ( 1r ` A ) .x. G ) ( +g ` C ) ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( u .x. i ) ) ) ) |
64 |
1 3 20 21 8 9 22 12 49 15
|
lcdvscl |
|- ( ph -> ( ( 1r ` A ) .x. G ) e. F ) |
65 |
1 3 20 21 8 9 22 12 27 36
|
lcdvscl |
|- ( ph -> ( u .x. i ) e. F ) |
66 |
1 3 20 50 47 8 9 28 22 10 12 64 65
|
lcdvsub |
|- ( ph -> ( ( ( 1r ` A ) .x. G ) R ( u .x. i ) ) = ( ( ( 1r ` A ) .x. G ) ( +g ` C ) ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( u .x. i ) ) ) ) |
67 |
1 3 20 21 53 8 9 22 12 52 24 36
|
lcdvsass |
|- ( ph -> ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) = ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( v .x. i ) ) ) |
68 |
67
|
oveq2d |
|- ( ph -> ( ( v .x. G ) ( +g ` C ) ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) ) = ( ( v .x. G ) ( +g ` C ) ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( v .x. i ) ) ) ) |
69 |
1 3 20 21 8 9 22 12 24 15
|
lcdvscl |
|- ( ph -> ( v .x. G ) e. F ) |
70 |
1 3 20 21 8 9 22 12 24 36
|
lcdvscl |
|- ( ph -> ( v .x. i ) e. F ) |
71 |
1 3 20 50 47 8 9 28 22 10 12 69 70
|
lcdvsub |
|- ( ph -> ( ( v .x. G ) R ( v .x. i ) ) = ( ( v .x. G ) ( +g ` C ) ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( v .x. i ) ) ) ) |
72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
|
mapdpglem28 |
|- ( ph -> ( ( v .x. G ) R ( v .x. i ) ) = ( G R ( u .x. i ) ) ) |
73 |
|
eqid |
|- ( 1r ` ( Scalar ` C ) ) = ( 1r ` ( Scalar ` C ) ) |
74 |
1 3 20 47 8 29 73 12
|
lcd1 |
|- ( ph -> ( 1r ` ( Scalar ` C ) ) = ( 1r ` A ) ) |
75 |
74
|
oveq1d |
|- ( ph -> ( ( 1r ` ( Scalar ` C ) ) .x. G ) = ( ( 1r ` A ) .x. G ) ) |
76 |
1 8 12
|
lcdlmod |
|- ( ph -> C e. LMod ) |
77 |
9 29 22 73
|
lmodvs1 |
|- ( ( C e. LMod /\ G e. F ) -> ( ( 1r ` ( Scalar ` C ) ) .x. G ) = G ) |
78 |
76 15 77
|
syl2anc |
|- ( ph -> ( ( 1r ` ( Scalar ` C ) ) .x. G ) = G ) |
79 |
75 78
|
eqtr3d |
|- ( ph -> ( ( 1r ` A ) .x. G ) = G ) |
80 |
79
|
oveq1d |
|- ( ph -> ( ( ( 1r ` A ) .x. G ) R ( u .x. i ) ) = ( G R ( u .x. i ) ) ) |
81 |
72 80
|
eqtr4d |
|- ( ph -> ( ( v .x. G ) R ( v .x. i ) ) = ( ( ( 1r ` A ) .x. G ) R ( u .x. i ) ) ) |
82 |
68 71 81
|
3eqtr2rd |
|- ( ph -> ( ( ( 1r ` A ) .x. G ) R ( u .x. i ) ) = ( ( v .x. G ) ( +g ` C ) ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) ) ) |
83 |
63 66 82
|
3eqtr2rd |
|- ( ph -> ( ( v .x. G ) ( +g ` C ) ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) ) = ( ( ( 1r ` A ) .x. G ) ( +g ` C ) ( ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) ) ) |
84 |
9 28 29 30 22 31 11 32 35 39 41 56 57 60 61 83
|
lvecindp2 |
|- ( ph -> ( v = ( 1r ` A ) /\ ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) ) ) |
85 |
21 53 47 50 44 24
|
rngnegr |
|- ( ph -> ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( ( invg ` A ) ` v ) ) |
86 |
21 53 47 50 44 27
|
rngnegr |
|- ( ph -> ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( ( invg ` A ) ` u ) ) |
87 |
85 86
|
eqeq12d |
|- ( ph -> ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) <-> ( ( invg ` A ) ` v ) = ( ( invg ` A ) ` u ) ) ) |
88 |
21 50 46 24 27
|
grpinv11 |
|- ( ph -> ( ( ( invg ` A ) ` v ) = ( ( invg ` A ) ` u ) <-> v = u ) ) |
89 |
87 88
|
bitrd |
|- ( ph -> ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) <-> v = u ) ) |
90 |
89
|
anbi2d |
|- ( ph -> ( ( v = ( 1r ` A ) /\ ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) ) <-> ( v = ( 1r ` A ) /\ v = u ) ) ) |
91 |
84 90
|
mpbid |
|- ( ph -> ( v = ( 1r ` A ) /\ v = u ) ) |