| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpg.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdpg.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdpg.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdpg.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | mapdpg.s |  |-  .- = ( -g ` U ) | 
						
							| 6 |  | mapdpg.z |  |-  .0. = ( 0g ` U ) | 
						
							| 7 |  | mapdpg.n |  |-  N = ( LSpan ` U ) | 
						
							| 8 |  | mapdpg.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | mapdpg.f |  |-  F = ( Base ` C ) | 
						
							| 10 |  | mapdpg.r |  |-  R = ( -g ` C ) | 
						
							| 11 |  | mapdpg.j |  |-  J = ( LSpan ` C ) | 
						
							| 12 |  | mapdpg.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 13 |  | mapdpg.x |  |-  ( ph -> X e. ( V \ { .0. } ) ) | 
						
							| 14 |  | mapdpg.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 15 |  | mapdpg.g |  |-  ( ph -> G e. F ) | 
						
							| 16 |  | mapdpg.ne |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 17 |  | mapdpg.e |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) | 
						
							| 18 |  | mapdpgem25.h1 |  |-  ( ph -> ( h e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R h ) } ) ) ) ) | 
						
							| 19 |  | mapdpgem25.i1 |  |-  ( ph -> ( i e. F /\ ( ( M ` ( N ` { Y } ) ) = ( J ` { i } ) /\ ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { ( G R i ) } ) ) ) ) | 
						
							| 20 |  | mapdpglem26.a |  |-  A = ( Scalar ` U ) | 
						
							| 21 |  | mapdpglem26.b |  |-  B = ( Base ` A ) | 
						
							| 22 |  | mapdpglem26.t |  |-  .x. = ( .s ` C ) | 
						
							| 23 |  | mapdpglem26.o |  |-  O = ( 0g ` A ) | 
						
							| 24 |  | mapdpglem28.ve |  |-  ( ph -> v e. B ) | 
						
							| 25 |  | mapdpglem28.u1 |  |-  ( ph -> h = ( u .x. i ) ) | 
						
							| 26 |  | mapdpglem28.u2 |  |-  ( ph -> ( G R h ) = ( v .x. ( G R i ) ) ) | 
						
							| 27 |  | mapdpglem28.ue |  |-  ( ph -> u e. B ) | 
						
							| 28 |  | eqid |  |-  ( +g ` C ) = ( +g ` C ) | 
						
							| 29 |  | eqid |  |-  ( Scalar ` C ) = ( Scalar ` C ) | 
						
							| 30 |  | eqid |  |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) | 
						
							| 31 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 32 | 1 8 12 | lcdlvec |  |-  ( ph -> C e. LVec ) | 
						
							| 33 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | mapdpglem30a |  |-  ( ph -> G =/= ( 0g ` C ) ) | 
						
							| 34 |  | eldifsn |  |-  ( G e. ( F \ { ( 0g ` C ) } ) <-> ( G e. F /\ G =/= ( 0g ` C ) ) ) | 
						
							| 35 | 15 33 34 | sylanbrc |  |-  ( ph -> G e. ( F \ { ( 0g ` C ) } ) ) | 
						
							| 36 | 19 | simpld |  |-  ( ph -> i e. F ) | 
						
							| 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | mapdpglem30b |  |-  ( ph -> i =/= ( 0g ` C ) ) | 
						
							| 38 |  | eldifsn |  |-  ( i e. ( F \ { ( 0g ` C ) } ) <-> ( i e. F /\ i =/= ( 0g ` C ) ) ) | 
						
							| 39 | 36 37 38 | sylanbrc |  |-  ( ph -> i e. ( F \ { ( 0g ` C ) } ) ) | 
						
							| 40 | 1 3 20 21 8 29 30 12 | lcdsbase |  |-  ( ph -> ( Base ` ( Scalar ` C ) ) = B ) | 
						
							| 41 | 24 40 | eleqtrrd |  |-  ( ph -> v e. ( Base ` ( Scalar ` C ) ) ) | 
						
							| 42 | 1 3 12 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 43 | 20 | lmodring |  |-  ( U e. LMod -> A e. Ring ) | 
						
							| 44 | 42 43 | syl |  |-  ( ph -> A e. Ring ) | 
						
							| 45 |  | ringgrp |  |-  ( A e. Ring -> A e. Grp ) | 
						
							| 46 | 44 45 | syl |  |-  ( ph -> A e. Grp ) | 
						
							| 47 |  | eqid |  |-  ( 1r ` A ) = ( 1r ` A ) | 
						
							| 48 | 21 47 | ringidcl |  |-  ( A e. Ring -> ( 1r ` A ) e. B ) | 
						
							| 49 | 44 48 | syl |  |-  ( ph -> ( 1r ` A ) e. B ) | 
						
							| 50 |  | eqid |  |-  ( invg ` A ) = ( invg ` A ) | 
						
							| 51 | 21 50 | grpinvcl |  |-  ( ( A e. Grp /\ ( 1r ` A ) e. B ) -> ( ( invg ` A ) ` ( 1r ` A ) ) e. B ) | 
						
							| 52 | 46 49 51 | syl2anc |  |-  ( ph -> ( ( invg ` A ) ` ( 1r ` A ) ) e. B ) | 
						
							| 53 |  | eqid |  |-  ( .r ` A ) = ( .r ` A ) | 
						
							| 54 | 21 53 | ringcl |  |-  ( ( A e. Ring /\ v e. B /\ ( ( invg ` A ) ` ( 1r ` A ) ) e. B ) -> ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. B ) | 
						
							| 55 | 44 24 52 54 | syl3anc |  |-  ( ph -> ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. B ) | 
						
							| 56 | 55 40 | eleqtrrd |  |-  ( ph -> ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. ( Base ` ( Scalar ` C ) ) ) | 
						
							| 57 | 49 40 | eleqtrrd |  |-  ( ph -> ( 1r ` A ) e. ( Base ` ( Scalar ` C ) ) ) | 
						
							| 58 | 21 53 | ringcl |  |-  ( ( A e. Ring /\ u e. B /\ ( ( invg ` A ) ` ( 1r ` A ) ) e. B ) -> ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. B ) | 
						
							| 59 | 44 27 52 58 | syl3anc |  |-  ( ph -> ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. B ) | 
						
							| 60 | 59 40 | eleqtrrd |  |-  ( ph -> ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) e. ( Base ` ( Scalar ` C ) ) ) | 
						
							| 61 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | mapdpglem29 |  |-  ( ph -> ( J ` { G } ) =/= ( J ` { i } ) ) | 
						
							| 62 | 1 3 20 21 53 8 9 22 12 52 27 36 | lcdvsass |  |-  ( ph -> ( ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) = ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( u .x. i ) ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( ph -> ( ( ( 1r ` A ) .x. G ) ( +g ` C ) ( ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) ) = ( ( ( 1r ` A ) .x. G ) ( +g ` C ) ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( u .x. i ) ) ) ) | 
						
							| 64 | 1 3 20 21 8 9 22 12 49 15 | lcdvscl |  |-  ( ph -> ( ( 1r ` A ) .x. G ) e. F ) | 
						
							| 65 | 1 3 20 21 8 9 22 12 27 36 | lcdvscl |  |-  ( ph -> ( u .x. i ) e. F ) | 
						
							| 66 | 1 3 20 50 47 8 9 28 22 10 12 64 65 | lcdvsub |  |-  ( ph -> ( ( ( 1r ` A ) .x. G ) R ( u .x. i ) ) = ( ( ( 1r ` A ) .x. G ) ( +g ` C ) ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( u .x. i ) ) ) ) | 
						
							| 67 | 1 3 20 21 53 8 9 22 12 52 24 36 | lcdvsass |  |-  ( ph -> ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) = ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( v .x. i ) ) ) | 
						
							| 68 | 67 | oveq2d |  |-  ( ph -> ( ( v .x. G ) ( +g ` C ) ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) ) = ( ( v .x. G ) ( +g ` C ) ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( v .x. i ) ) ) ) | 
						
							| 69 | 1 3 20 21 8 9 22 12 24 15 | lcdvscl |  |-  ( ph -> ( v .x. G ) e. F ) | 
						
							| 70 | 1 3 20 21 8 9 22 12 24 36 | lcdvscl |  |-  ( ph -> ( v .x. i ) e. F ) | 
						
							| 71 | 1 3 20 50 47 8 9 28 22 10 12 69 70 | lcdvsub |  |-  ( ph -> ( ( v .x. G ) R ( v .x. i ) ) = ( ( v .x. G ) ( +g ` C ) ( ( ( invg ` A ) ` ( 1r ` A ) ) .x. ( v .x. i ) ) ) ) | 
						
							| 72 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | mapdpglem28 |  |-  ( ph -> ( ( v .x. G ) R ( v .x. i ) ) = ( G R ( u .x. i ) ) ) | 
						
							| 73 |  | eqid |  |-  ( 1r ` ( Scalar ` C ) ) = ( 1r ` ( Scalar ` C ) ) | 
						
							| 74 | 1 3 20 47 8 29 73 12 | lcd1 |  |-  ( ph -> ( 1r ` ( Scalar ` C ) ) = ( 1r ` A ) ) | 
						
							| 75 | 74 | oveq1d |  |-  ( ph -> ( ( 1r ` ( Scalar ` C ) ) .x. G ) = ( ( 1r ` A ) .x. G ) ) | 
						
							| 76 | 1 8 12 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 77 | 9 29 22 73 | lmodvs1 |  |-  ( ( C e. LMod /\ G e. F ) -> ( ( 1r ` ( Scalar ` C ) ) .x. G ) = G ) | 
						
							| 78 | 76 15 77 | syl2anc |  |-  ( ph -> ( ( 1r ` ( Scalar ` C ) ) .x. G ) = G ) | 
						
							| 79 | 75 78 | eqtr3d |  |-  ( ph -> ( ( 1r ` A ) .x. G ) = G ) | 
						
							| 80 | 79 | oveq1d |  |-  ( ph -> ( ( ( 1r ` A ) .x. G ) R ( u .x. i ) ) = ( G R ( u .x. i ) ) ) | 
						
							| 81 | 72 80 | eqtr4d |  |-  ( ph -> ( ( v .x. G ) R ( v .x. i ) ) = ( ( ( 1r ` A ) .x. G ) R ( u .x. i ) ) ) | 
						
							| 82 | 68 71 81 | 3eqtr2rd |  |-  ( ph -> ( ( ( 1r ` A ) .x. G ) R ( u .x. i ) ) = ( ( v .x. G ) ( +g ` C ) ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) ) ) | 
						
							| 83 | 63 66 82 | 3eqtr2rd |  |-  ( ph -> ( ( v .x. G ) ( +g ` C ) ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) ) = ( ( ( 1r ` A ) .x. G ) ( +g ` C ) ( ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) .x. i ) ) ) | 
						
							| 84 | 9 28 29 30 22 31 11 32 35 39 41 56 57 60 61 83 | lvecindp2 |  |-  ( ph -> ( v = ( 1r ` A ) /\ ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) ) ) | 
						
							| 85 | 21 53 47 50 44 24 | ringnegr |  |-  ( ph -> ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( ( invg ` A ) ` v ) ) | 
						
							| 86 | 21 53 47 50 44 27 | ringnegr |  |-  ( ph -> ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( ( invg ` A ) ` u ) ) | 
						
							| 87 | 85 86 | eqeq12d |  |-  ( ph -> ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) <-> ( ( invg ` A ) ` v ) = ( ( invg ` A ) ` u ) ) ) | 
						
							| 88 | 21 50 46 24 27 | grpinv11 |  |-  ( ph -> ( ( ( invg ` A ) ` v ) = ( ( invg ` A ) ` u ) <-> v = u ) ) | 
						
							| 89 | 87 88 | bitrd |  |-  ( ph -> ( ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) <-> v = u ) ) | 
						
							| 90 | 89 | anbi2d |  |-  ( ph -> ( ( v = ( 1r ` A ) /\ ( v ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) = ( u ( .r ` A ) ( ( invg ` A ) ` ( 1r ` A ) ) ) ) <-> ( v = ( 1r ` A ) /\ v = u ) ) ) | 
						
							| 91 | 84 90 | mpbid |  |-  ( ph -> ( v = ( 1r ` A ) /\ v = u ) ) |