| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpg.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdpg.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdpg.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdpg.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | mapdpg.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 6 |  | mapdpg.z | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 7 |  | mapdpg.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 8 |  | mapdpg.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | mapdpg.f | ⊢ 𝐹  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | mapdpg.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 11 |  | mapdpg.j | ⊢ 𝐽  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | mapdpg.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | mapdpg.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 14 |  | mapdpg.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 15 |  | mapdpg.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 16 |  | mapdpg.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 17 |  | mapdpg.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 18 | 13 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 19 | 14 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 20 |  | eqid | ⊢ ( LSSum ‘ 𝐶 )  =  ( LSSum ‘ 𝐶 ) | 
						
							| 21 | 1 2 3 4 5 7 8 12 18 19 20 11 | mapdpglem2 | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) ) | 
						
							| 22 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 23 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 24 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 25 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 26 |  | eqid | ⊢ ( Scalar ‘ 𝑈 )  =  ( Scalar ‘ 𝑈 ) | 
						
							| 27 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) )  =  ( Base ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 28 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐶 )  =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 29 | 15 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  𝐺  ∈  𝐹 ) | 
						
							| 30 | 17 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 31 | 1 2 3 4 5 7 8 22 23 24 20 11 9 25 26 27 28 10 29 30 | mapdpglem3 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  ∃ 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) ) | 
						
							| 32 | 22 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 33 | 23 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  𝑋  ∈  𝑉 ) | 
						
							| 34 | 24 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  𝑌  ∈  𝑉 ) | 
						
							| 35 |  | simp12 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 36 | 29 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  𝐺  ∈  𝐹 ) | 
						
							| 37 | 30 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 38 | 16 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 39 | 38 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 40 |  | simp13 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) ) | 
						
							| 41 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 42 |  | simp2l | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) | 
						
							| 43 |  | simp2r | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 44 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) ) | 
						
							| 45 |  | eldifsni | ⊢ ( 𝑋  ∈  ( 𝑉  ∖  {  0  } )  →  𝑋  ≠   0  ) | 
						
							| 46 | 13 45 | syl | ⊢ ( 𝜑  →  𝑋  ≠   0  ) | 
						
							| 47 | 46 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  𝑋  ≠   0  ) | 
						
							| 48 | 47 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  𝑋  ≠   0  ) | 
						
							| 49 |  | eldifsni | ⊢ ( 𝑌  ∈  ( 𝑉  ∖  {  0  } )  →  𝑌  ≠   0  ) | 
						
							| 50 | 14 49 | syl | ⊢ ( 𝜑  →  𝑌  ≠   0  ) | 
						
							| 51 | 50 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  𝑌  ≠   0  ) | 
						
							| 52 | 51 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  𝑌  ≠   0  ) | 
						
							| 53 |  | eqid | ⊢ ( ( ( invr ‘ ( Scalar ‘ 𝑈 ) ) ‘ 𝑔 ) (  ·𝑠  ‘ 𝐶 ) 𝑧 )  =  ( ( ( invr ‘ ( Scalar ‘ 𝑈 ) ) ‘ 𝑔 ) (  ·𝑠  ‘ 𝐶 ) 𝑧 ) | 
						
							| 54 | 1 2 3 4 5 7 8 32 33 34 20 11 9 35 26 27 28 10 36 37 6 39 40 41 42 43 44 48 52 53 | mapdpglem23 | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  ∧  ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 ) )  →  ∃ ℎ  ∈  𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) | 
						
							| 55 | 54 | 3exp | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  ( ( 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) )  ∧  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  →  ( 𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 )  →  ∃ ℎ  ∈  𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) ) | 
						
							| 56 | 55 | rexlimdvv | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  ( ∃ 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝑈 ) ) ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( ( 𝑔 (  ·𝑠  ‘ 𝐶 ) 𝐺 ) 𝑅 𝑧 )  →  ∃ ℎ  ∈  𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) | 
						
							| 57 | 31 56 | mpd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) )  →  ∃ ℎ  ∈  𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) | 
						
							| 58 | 57 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( LSSum ‘ 𝐶 ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } )  →  ∃ ℎ  ∈  𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) ) | 
						
							| 59 | 21 58 | mpd | ⊢ ( 𝜑  →  ∃ ℎ  ∈  𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) |