| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpglem.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdpglem.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdpglem.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdpglem.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | mapdpglem.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 6 |  | mapdpglem.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 7 |  | mapdpglem.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | mapdpglem.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | mapdpglem.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | mapdpglem.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 11 |  | mapdpglem1.p | ⊢  ⊕   =  ( LSSum ‘ 𝐶 ) | 
						
							| 12 |  | mapdpglem2.j | ⊢ 𝐽  =  ( LSpan ‘ 𝐶 ) | 
						
							| 13 |  | mapdpglem3.f | ⊢ 𝐹  =  ( Base ‘ 𝐶 ) | 
						
							| 14 |  | mapdpglem3.te | ⊢ ( 𝜑  →  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  ⊕  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 15 |  | mapdpglem3.a | ⊢ 𝐴  =  ( Scalar ‘ 𝑈 ) | 
						
							| 16 |  | mapdpglem3.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 17 |  | mapdpglem3.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 18 |  | mapdpglem3.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 19 |  | mapdpglem3.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 20 |  | mapdpglem3.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  ⊕  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  =  ( ( 𝐽 ‘ { 𝐺 } )  ⊕  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 22 | 14 21 | eleqtrd | ⊢ ( 𝜑  →  𝑡  ∈  ( ( 𝐽 ‘ { 𝐺 } )  ⊕  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 23 |  | r19.41v | ⊢ ( ∃ 𝑔  ∈  𝐵 ( 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) )  ↔  ( ∃ 𝑔  ∈  𝐵 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) ) ) | 
						
							| 24 | 1 7 8 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 25 |  | eqid | ⊢ ( Scalar ‘ 𝐶 )  =  ( Scalar ‘ 𝐶 ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  ( Base ‘ ( Scalar ‘ 𝐶 ) ) | 
						
							| 27 | 25 26 13 17 12 | ellspsn | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝐺  ∈  𝐹 )  →  ( 𝑤  ∈  ( 𝐽 ‘ { 𝐺 } )  ↔  ∃ 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) 𝑤  =  ( 𝑔  ·  𝐺 ) ) ) | 
						
							| 28 | 24 19 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐽 ‘ { 𝐺 } )  ↔  ∃ 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) 𝑤  =  ( 𝑔  ·  𝐺 ) ) ) | 
						
							| 29 | 1 3 15 16 7 25 26 8 | lcdsbase | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ 𝐶 ) )  =  𝐵 ) | 
						
							| 30 | 29 | rexeqdv | ⊢ ( 𝜑  →  ( ∃ 𝑔  ∈  ( Base ‘ ( Scalar ‘ 𝐶 ) ) 𝑤  =  ( 𝑔  ·  𝐺 )  ↔  ∃ 𝑔  ∈  𝐵 𝑤  =  ( 𝑔  ·  𝐺 ) ) ) | 
						
							| 31 | 28 30 | bitrd | ⊢ ( 𝜑  →  ( 𝑤  ∈  ( 𝐽 ‘ { 𝐺 } )  ↔  ∃ 𝑔  ∈  𝐵 𝑤  =  ( 𝑔  ·  𝐺 ) ) ) | 
						
							| 32 | 31 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝑤  ∈  ( 𝐽 ‘ { 𝐺 } )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) )  ↔  ( ∃ 𝑔  ∈  𝐵 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) ) ) ) | 
						
							| 33 | 23 32 | bitr4id | ⊢ ( 𝜑  →  ( ∃ 𝑔  ∈  𝐵 ( 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) )  ↔  ( 𝑤  ∈  ( 𝐽 ‘ { 𝐺 } )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) ) ) ) | 
						
							| 34 | 33 | exbidv | ⊢ ( 𝜑  →  ( ∃ 𝑤 ∃ 𝑔  ∈  𝐵 ( 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) )  ↔  ∃ 𝑤 ( 𝑤  ∈  ( 𝐽 ‘ { 𝐺 } )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) ) ) ) | 
						
							| 35 |  | df-rex | ⊢ ( ∃ 𝑤  ∈  ( 𝐽 ‘ { 𝐺 } ) ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 )  ↔  ∃ 𝑤 ( 𝑤  ∈  ( 𝐽 ‘ { 𝐺 } )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) ) ) | 
						
							| 36 | 34 35 | bitr4di | ⊢ ( 𝜑  →  ( ∃ 𝑤 ∃ 𝑔  ∈  𝐵 ( 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) )  ↔  ∃ 𝑤  ∈  ( 𝐽 ‘ { 𝐺 } ) ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( LSubSp ‘ 𝐶 )  =  ( LSubSp ‘ 𝐶 ) | 
						
							| 38 | 37 | lsssssubg | ⊢ ( 𝐶  ∈  LMod  →  ( LSubSp ‘ 𝐶 )  ⊆  ( SubGrp ‘ 𝐶 ) ) | 
						
							| 39 | 24 38 | syl | ⊢ ( 𝜑  →  ( LSubSp ‘ 𝐶 )  ⊆  ( SubGrp ‘ 𝐶 ) ) | 
						
							| 40 | 13 37 12 | lspsncl | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝐺  ∈  𝐹 )  →  ( 𝐽 ‘ { 𝐺 } )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 41 | 24 19 40 | syl2anc | ⊢ ( 𝜑  →  ( 𝐽 ‘ { 𝐺 } )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 42 | 39 41 | sseldd | ⊢ ( 𝜑  →  ( 𝐽 ‘ { 𝐺 } )  ∈  ( SubGrp ‘ 𝐶 ) ) | 
						
							| 43 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 44 | 1 3 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 45 | 4 43 6 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 46 | 44 10 45 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 47 | 1 2 3 43 7 37 8 46 | mapdcl2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 48 | 39 47 | sseldd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  ∈  ( SubGrp ‘ 𝐶 ) ) | 
						
							| 49 | 18 11 42 48 | lsmelvalm | ⊢ ( 𝜑  →  ( 𝑡  ∈  ( ( 𝐽 ‘ { 𝐺 } )  ⊕  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  ↔  ∃ 𝑤  ∈  ( 𝐽 ‘ { 𝐺 } ) ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) ) ) | 
						
							| 50 | 36 49 | bitr4d | ⊢ ( 𝜑  →  ( ∃ 𝑤 ∃ 𝑔  ∈  𝐵 ( 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) )  ↔  𝑡  ∈  ( ( 𝐽 ‘ { 𝐺 } )  ⊕  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) ) | 
						
							| 51 | 22 50 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑤 ∃ 𝑔  ∈  𝐵 ( 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) ) ) | 
						
							| 52 |  | ovex | ⊢ ( 𝑔  ·  𝐺 )  ∈  V | 
						
							| 53 |  | oveq1 | ⊢ ( 𝑤  =  ( 𝑔  ·  𝐺 )  →  ( 𝑤 𝑅 𝑧 )  =  ( ( 𝑔  ·  𝐺 ) 𝑅 𝑧 ) ) | 
						
							| 54 | 53 | eqeq2d | ⊢ ( 𝑤  =  ( 𝑔  ·  𝐺 )  →  ( 𝑡  =  ( 𝑤 𝑅 𝑧 )  ↔  𝑡  =  ( ( 𝑔  ·  𝐺 ) 𝑅 𝑧 ) ) ) | 
						
							| 55 | 54 | rexbidv | ⊢ ( 𝑤  =  ( 𝑔  ·  𝐺 )  →  ( ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 )  ↔  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( ( 𝑔  ·  𝐺 ) 𝑅 𝑧 ) ) ) | 
						
							| 56 | 52 55 | ceqsexv | ⊢ ( ∃ 𝑤 ( 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) )  ↔  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( ( 𝑔  ·  𝐺 ) 𝑅 𝑧 ) ) | 
						
							| 57 | 56 | rexbii | ⊢ ( ∃ 𝑔  ∈  𝐵 ∃ 𝑤 ( 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) )  ↔  ∃ 𝑔  ∈  𝐵 ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( ( 𝑔  ·  𝐺 ) 𝑅 𝑧 ) ) | 
						
							| 58 |  | rexcom4 | ⊢ ( ∃ 𝑔  ∈  𝐵 ∃ 𝑤 ( 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) )  ↔  ∃ 𝑤 ∃ 𝑔  ∈  𝐵 ( 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) ) ) | 
						
							| 59 | 57 58 | bitr3i | ⊢ ( ∃ 𝑔  ∈  𝐵 ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( ( 𝑔  ·  𝐺 ) 𝑅 𝑧 )  ↔  ∃ 𝑤 ∃ 𝑔  ∈  𝐵 ( 𝑤  =  ( 𝑔  ·  𝐺 )  ∧  ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( 𝑤 𝑅 𝑧 ) ) ) | 
						
							| 60 | 51 59 | sylibr | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  𝐵 ∃ 𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) 𝑡  =  ( ( 𝑔  ·  𝐺 ) 𝑅 𝑧 ) ) |