Description: Lemma for mapdpg . (Contributed by NM, 20-Mar-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapdpglem.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| mapdpglem.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | ||
| mapdpglem.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
| mapdpglem.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | ||
| mapdpglem.s | ⊢ − = ( -g ‘ 𝑈 ) | ||
| mapdpglem.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | ||
| mapdpglem.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | ||
| mapdpglem.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
| mapdpglem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| mapdpglem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| mapdpglem1.p | ⊢ ⊕ = ( LSSum ‘ 𝐶 ) | ||
| mapdpglem2.j | ⊢ 𝐽 = ( LSpan ‘ 𝐶 ) | ||
| mapdpglem3.f | ⊢ 𝐹 = ( Base ‘ 𝐶 ) | ||
| mapdpglem3.te | ⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) | ||
| mapdpglem3.a | ⊢ 𝐴 = ( Scalar ‘ 𝑈 ) | ||
| mapdpglem3.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mapdpglem3.t | ⊢ · = ( ·𝑠 ‘ 𝐶 ) | ||
| mapdpglem3.r | ⊢ 𝑅 = ( -g ‘ 𝐶 ) | ||
| mapdpglem3.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) | ||
| mapdpglem3.e | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) | ||
| mapdpglem4.q | ⊢ 𝑄 = ( 0g ‘ 𝑈 ) | ||
| mapdpglem.ne | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| Assertion | mapdpglem4N | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ≠ 𝑄 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mapdpglem.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
| 2 | mapdpglem.m | ⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | |
| 3 | mapdpglem.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
| 4 | mapdpglem.v | ⊢ 𝑉 = ( Base ‘ 𝑈 ) | |
| 5 | mapdpglem.s | ⊢ − = ( -g ‘ 𝑈 ) | |
| 6 | mapdpglem.n | ⊢ 𝑁 = ( LSpan ‘ 𝑈 ) | |
| 7 | mapdpglem.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | |
| 8 | mapdpglem.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
| 9 | mapdpglem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 10 | mapdpglem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 11 | mapdpglem1.p | ⊢ ⊕ = ( LSSum ‘ 𝐶 ) | |
| 12 | mapdpglem2.j | ⊢ 𝐽 = ( LSpan ‘ 𝐶 ) | |
| 13 | mapdpglem3.f | ⊢ 𝐹 = ( Base ‘ 𝐶 ) | |
| 14 | mapdpglem3.te | ⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) | |
| 15 | mapdpglem3.a | ⊢ 𝐴 = ( Scalar ‘ 𝑈 ) | |
| 16 | mapdpglem3.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 17 | mapdpglem3.t | ⊢ · = ( ·𝑠 ‘ 𝐶 ) | |
| 18 | mapdpglem3.r | ⊢ 𝑅 = ( -g ‘ 𝐶 ) | |
| 19 | mapdpglem3.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) | |
| 20 | mapdpglem3.e | ⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) | |
| 21 | mapdpglem4.q | ⊢ 𝑄 = ( 0g ‘ 𝑈 ) | |
| 22 | mapdpglem.ne | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 23 | 1 3 8 | dvhlmod | ⊢ ( 𝜑 → 𝑈 ∈ LMod ) | 
| 24 | 4 21 5 23 9 10 22 | lspsnsubn0 | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ≠ 𝑄 ) |