Description: Lemma for mapdpg . (Contributed by NM, 20-Mar-2015) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapdpglem.h | |- H = ( LHyp ` K ) | |
| mapdpglem.m | |- M = ( ( mapd ` K ) ` W ) | ||
| mapdpglem.u | |- U = ( ( DVecH ` K ) ` W ) | ||
| mapdpglem.v | |- V = ( Base ` U ) | ||
| mapdpglem.s | |- .- = ( -g ` U ) | ||
| mapdpglem.n | |- N = ( LSpan ` U ) | ||
| mapdpglem.c | |- C = ( ( LCDual ` K ) ` W ) | ||
| mapdpglem.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | ||
| mapdpglem.x | |- ( ph -> X e. V ) | ||
| mapdpglem.y | |- ( ph -> Y e. V ) | ||
| mapdpglem1.p | |- .(+) = ( LSSum ` C ) | ||
| mapdpglem2.j | |- J = ( LSpan ` C ) | ||
| mapdpglem3.f | |- F = ( Base ` C ) | ||
| mapdpglem3.te | |- ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) | ||
| mapdpglem3.a | |- A = ( Scalar ` U ) | ||
| mapdpglem3.b | |- B = ( Base ` A ) | ||
| mapdpglem3.t | |- .x. = ( .s ` C ) | ||
| mapdpglem3.r | |- R = ( -g ` C ) | ||
| mapdpglem3.g | |- ( ph -> G e. F ) | ||
| mapdpglem3.e | |- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) | ||
| mapdpglem4.q | |- Q = ( 0g ` U ) | ||
| mapdpglem.ne | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | ||
| Assertion | mapdpglem4N | |- ( ph -> ( X .- Y ) =/= Q ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mapdpglem.h | |- H = ( LHyp ` K ) | |
| 2 | mapdpglem.m | |- M = ( ( mapd ` K ) ` W ) | |
| 3 | mapdpglem.u | |- U = ( ( DVecH ` K ) ` W ) | |
| 4 | mapdpglem.v | |- V = ( Base ` U ) | |
| 5 | mapdpglem.s | |- .- = ( -g ` U ) | |
| 6 | mapdpglem.n | |- N = ( LSpan ` U ) | |
| 7 | mapdpglem.c | |- C = ( ( LCDual ` K ) ` W ) | |
| 8 | mapdpglem.k | |- ( ph -> ( K e. HL /\ W e. H ) ) | |
| 9 | mapdpglem.x | |- ( ph -> X e. V ) | |
| 10 | mapdpglem.y | |- ( ph -> Y e. V ) | |
| 11 | mapdpglem1.p | |- .(+) = ( LSSum ` C ) | |
| 12 | mapdpglem2.j | |- J = ( LSpan ` C ) | |
| 13 | mapdpglem3.f | |- F = ( Base ` C ) | |
| 14 | mapdpglem3.te |  |-  ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) | |
| 15 | mapdpglem3.a | |- A = ( Scalar ` U ) | |
| 16 | mapdpglem3.b | |- B = ( Base ` A ) | |
| 17 | mapdpglem3.t | |- .x. = ( .s ` C ) | |
| 18 | mapdpglem3.r | |- R = ( -g ` C ) | |
| 19 | mapdpglem3.g | |- ( ph -> G e. F ) | |
| 20 | mapdpglem3.e |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) | |
| 21 | mapdpglem4.q | |- Q = ( 0g ` U ) | |
| 22 | mapdpglem.ne |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | |
| 23 | 1 3 8 | dvhlmod | |- ( ph -> U e. LMod ) | 
| 24 | 4 21 5 23 9 10 22 | lspsnsubn0 | |- ( ph -> ( X .- Y ) =/= Q ) |