| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpglem.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdpglem.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdpglem.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdpglem.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | mapdpglem.s |  |-  .- = ( -g ` U ) | 
						
							| 6 |  | mapdpglem.n |  |-  N = ( LSpan ` U ) | 
						
							| 7 |  | mapdpglem.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | mapdpglem.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | mapdpglem.x |  |-  ( ph -> X e. V ) | 
						
							| 10 |  | mapdpglem.y |  |-  ( ph -> Y e. V ) | 
						
							| 11 |  | mapdpglem1.p |  |-  .(+) = ( LSSum ` C ) | 
						
							| 12 |  | mapdpglem2.j |  |-  J = ( LSpan ` C ) | 
						
							| 13 |  | mapdpglem3.f |  |-  F = ( Base ` C ) | 
						
							| 14 |  | mapdpglem3.te |  |-  ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) | 
						
							| 15 |  | mapdpglem3.a |  |-  A = ( Scalar ` U ) | 
						
							| 16 |  | mapdpglem3.b |  |-  B = ( Base ` A ) | 
						
							| 17 |  | mapdpglem3.t |  |-  .x. = ( .s ` C ) | 
						
							| 18 |  | mapdpglem3.r |  |-  R = ( -g ` C ) | 
						
							| 19 |  | mapdpglem3.g |  |-  ( ph -> G e. F ) | 
						
							| 20 |  | mapdpglem3.e |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) | 
						
							| 21 |  | mapdpglem4.q |  |-  Q = ( 0g ` U ) | 
						
							| 22 |  | mapdpglem.ne |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 23 |  | mapdpglem4.jt |  |-  ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) ) | 
						
							| 24 |  | eqid |  |-  ( LSAtoms ` U ) = ( LSAtoms ` U ) | 
						
							| 25 |  | eqid |  |-  ( LSAtoms ` C ) = ( LSAtoms ` C ) | 
						
							| 26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | mapdpglem4N |  |-  ( ph -> ( X .- Y ) =/= Q ) | 
						
							| 27 | 1 3 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 28 | 4 5 | lmodvsubcl |  |-  ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) | 
						
							| 29 | 27 9 10 28 | syl3anc |  |-  ( ph -> ( X .- Y ) e. V ) | 
						
							| 30 | 4 6 21 24 27 29 | lsatspn0 |  |-  ( ph -> ( ( N ` { ( X .- Y ) } ) e. ( LSAtoms ` U ) <-> ( X .- Y ) =/= Q ) ) | 
						
							| 31 | 26 30 | mpbird |  |-  ( ph -> ( N ` { ( X .- Y ) } ) e. ( LSAtoms ` U ) ) | 
						
							| 32 | 1 2 3 24 7 25 8 31 | mapdat |  |-  ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) e. ( LSAtoms ` C ) ) | 
						
							| 33 | 23 32 | eqeltrrd |  |-  ( ph -> ( J ` { t } ) e. ( LSAtoms ` C ) ) | 
						
							| 34 |  | eqid |  |-  ( 0g ` C ) = ( 0g ` C ) | 
						
							| 35 | 1 7 8 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | mapdpglem2a |  |-  ( ph -> t e. F ) | 
						
							| 37 | 13 12 34 25 35 36 | lsatspn0 |  |-  ( ph -> ( ( J ` { t } ) e. ( LSAtoms ` C ) <-> t =/= ( 0g ` C ) ) ) | 
						
							| 38 | 33 37 | mpbid |  |-  ( ph -> t =/= ( 0g ` C ) ) |