| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdpglem.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdpglem.m |
|- M = ( ( mapd ` K ) ` W ) |
| 3 |
|
mapdpglem.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
mapdpglem.v |
|- V = ( Base ` U ) |
| 5 |
|
mapdpglem.s |
|- .- = ( -g ` U ) |
| 6 |
|
mapdpglem.n |
|- N = ( LSpan ` U ) |
| 7 |
|
mapdpglem.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 8 |
|
mapdpglem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
mapdpglem.x |
|- ( ph -> X e. V ) |
| 10 |
|
mapdpglem.y |
|- ( ph -> Y e. V ) |
| 11 |
|
mapdpglem1.p |
|- .(+) = ( LSSum ` C ) |
| 12 |
|
mapdpglem2.j |
|- J = ( LSpan ` C ) |
| 13 |
|
mapdpglem3.f |
|- F = ( Base ` C ) |
| 14 |
|
mapdpglem3.te |
|- ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) |
| 15 |
|
mapdpglem3.a |
|- A = ( Scalar ` U ) |
| 16 |
|
mapdpglem3.b |
|- B = ( Base ` A ) |
| 17 |
|
mapdpglem3.t |
|- .x. = ( .s ` C ) |
| 18 |
|
mapdpglem3.r |
|- R = ( -g ` C ) |
| 19 |
|
mapdpglem3.g |
|- ( ph -> G e. F ) |
| 20 |
|
mapdpglem3.e |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) |
| 21 |
|
mapdpglem4.q |
|- Q = ( 0g ` U ) |
| 22 |
|
mapdpglem.ne |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 23 |
|
mapdpglem4.jt |
|- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) = ( J ` { t } ) ) |
| 24 |
|
eqid |
|- ( LSAtoms ` U ) = ( LSAtoms ` U ) |
| 25 |
|
eqid |
|- ( LSAtoms ` C ) = ( LSAtoms ` C ) |
| 26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
|
mapdpglem4N |
|- ( ph -> ( X .- Y ) =/= Q ) |
| 27 |
1 3 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 28 |
4 5
|
lmodvsubcl |
|- ( ( U e. LMod /\ X e. V /\ Y e. V ) -> ( X .- Y ) e. V ) |
| 29 |
27 9 10 28
|
syl3anc |
|- ( ph -> ( X .- Y ) e. V ) |
| 30 |
4 6 21 24 27 29
|
lsatspn0 |
|- ( ph -> ( ( N ` { ( X .- Y ) } ) e. ( LSAtoms ` U ) <-> ( X .- Y ) =/= Q ) ) |
| 31 |
26 30
|
mpbird |
|- ( ph -> ( N ` { ( X .- Y ) } ) e. ( LSAtoms ` U ) ) |
| 32 |
1 2 3 24 7 25 8 31
|
mapdat |
|- ( ph -> ( M ` ( N ` { ( X .- Y ) } ) ) e. ( LSAtoms ` C ) ) |
| 33 |
23 32
|
eqeltrrd |
|- ( ph -> ( J ` { t } ) e. ( LSAtoms ` C ) ) |
| 34 |
|
eqid |
|- ( 0g ` C ) = ( 0g ` C ) |
| 35 |
1 7 8
|
lcdlmod |
|- ( ph -> C e. LMod ) |
| 36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
mapdpglem2a |
|- ( ph -> t e. F ) |
| 37 |
13 12 34 25 35 36
|
lsatspn0 |
|- ( ph -> ( ( J ` { t } ) e. ( LSAtoms ` C ) <-> t =/= ( 0g ` C ) ) ) |
| 38 |
33 37
|
mpbid |
|- ( ph -> t =/= ( 0g ` C ) ) |