Metamath Proof Explorer


Theorem mapdpglem2a

Description: Lemma for mapdpg . (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h
|- H = ( LHyp ` K )
mapdpglem.m
|- M = ( ( mapd ` K ) ` W )
mapdpglem.u
|- U = ( ( DVecH ` K ) ` W )
mapdpglem.v
|- V = ( Base ` U )
mapdpglem.s
|- .- = ( -g ` U )
mapdpglem.n
|- N = ( LSpan ` U )
mapdpglem.c
|- C = ( ( LCDual ` K ) ` W )
mapdpglem.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdpglem.x
|- ( ph -> X e. V )
mapdpglem.y
|- ( ph -> Y e. V )
mapdpglem1.p
|- .(+) = ( LSSum ` C )
mapdpglem2.j
|- J = ( LSpan ` C )
mapdpglem3.f
|- F = ( Base ` C )
mapdpglem3.te
|- ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) )
Assertion mapdpglem2a
|- ( ph -> t e. F )

Proof

Step Hyp Ref Expression
1 mapdpglem.h
 |-  H = ( LHyp ` K )
2 mapdpglem.m
 |-  M = ( ( mapd ` K ) ` W )
3 mapdpglem.u
 |-  U = ( ( DVecH ` K ) ` W )
4 mapdpglem.v
 |-  V = ( Base ` U )
5 mapdpglem.s
 |-  .- = ( -g ` U )
6 mapdpglem.n
 |-  N = ( LSpan ` U )
7 mapdpglem.c
 |-  C = ( ( LCDual ` K ) ` W )
8 mapdpglem.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
9 mapdpglem.x
 |-  ( ph -> X e. V )
10 mapdpglem.y
 |-  ( ph -> Y e. V )
11 mapdpglem1.p
 |-  .(+) = ( LSSum ` C )
12 mapdpglem2.j
 |-  J = ( LSpan ` C )
13 mapdpglem3.f
 |-  F = ( Base ` C )
14 mapdpglem3.te
 |-  ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) )
15 1 7 8 lcdlmod
 |-  ( ph -> C e. LMod )
16 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
17 eqid
 |-  ( LSubSp ` C ) = ( LSubSp ` C )
18 1 3 8 dvhlmod
 |-  ( ph -> U e. LMod )
19 4 16 6 lspsncl
 |-  ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) )
20 18 9 19 syl2anc
 |-  ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) )
21 1 2 3 16 7 17 8 20 mapdcl2
 |-  ( ph -> ( M ` ( N ` { X } ) ) e. ( LSubSp ` C ) )
22 4 16 6 lspsncl
 |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) )
23 18 10 22 syl2anc
 |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) )
24 1 2 3 16 7 17 8 23 mapdcl2
 |-  ( ph -> ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) )
25 17 11 lsmcl
 |-  ( ( C e. LMod /\ ( M ` ( N ` { X } ) ) e. ( LSubSp ` C ) /\ ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) ) -> ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) e. ( LSubSp ` C ) )
26 15 21 24 25 syl3anc
 |-  ( ph -> ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) e. ( LSubSp ` C ) )
27 13 17 lssel
 |-  ( ( ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) e. ( LSubSp ` C ) /\ t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) -> t e. F )
28 26 14 27 syl2anc
 |-  ( ph -> t e. F )