| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdpglem.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdpglem.m |
|- M = ( ( mapd ` K ) ` W ) |
| 3 |
|
mapdpglem.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 4 |
|
mapdpglem.v |
|- V = ( Base ` U ) |
| 5 |
|
mapdpglem.s |
|- .- = ( -g ` U ) |
| 6 |
|
mapdpglem.n |
|- N = ( LSpan ` U ) |
| 7 |
|
mapdpglem.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 8 |
|
mapdpglem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 9 |
|
mapdpglem.x |
|- ( ph -> X e. V ) |
| 10 |
|
mapdpglem.y |
|- ( ph -> Y e. V ) |
| 11 |
|
mapdpglem1.p |
|- .(+) = ( LSSum ` C ) |
| 12 |
|
mapdpglem2.j |
|- J = ( LSpan ` C ) |
| 13 |
|
mapdpglem3.f |
|- F = ( Base ` C ) |
| 14 |
|
mapdpglem3.te |
|- ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) |
| 15 |
1 7 8
|
lcdlmod |
|- ( ph -> C e. LMod ) |
| 16 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
| 17 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
| 18 |
1 3 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 19 |
4 16 6
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
| 20 |
18 9 19
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
| 21 |
1 2 3 16 7 17 8 20
|
mapdcl2 |
|- ( ph -> ( M ` ( N ` { X } ) ) e. ( LSubSp ` C ) ) |
| 22 |
4 16 6
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 23 |
18 10 22
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
| 24 |
1 2 3 16 7 17 8 23
|
mapdcl2 |
|- ( ph -> ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) ) |
| 25 |
17 11
|
lsmcl |
|- ( ( C e. LMod /\ ( M ` ( N ` { X } ) ) e. ( LSubSp ` C ) /\ ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) ) -> ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) e. ( LSubSp ` C ) ) |
| 26 |
15 21 24 25
|
syl3anc |
|- ( ph -> ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) e. ( LSubSp ` C ) ) |
| 27 |
13 17
|
lssel |
|- ( ( ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) e. ( LSubSp ` C ) /\ t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) -> t e. F ) |
| 28 |
26 14 27
|
syl2anc |
|- ( ph -> t e. F ) |