Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpglem.h |
|- H = ( LHyp ` K ) |
2 |
|
mapdpglem.m |
|- M = ( ( mapd ` K ) ` W ) |
3 |
|
mapdpglem.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
mapdpglem.v |
|- V = ( Base ` U ) |
5 |
|
mapdpglem.s |
|- .- = ( -g ` U ) |
6 |
|
mapdpglem.n |
|- N = ( LSpan ` U ) |
7 |
|
mapdpglem.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
mapdpglem.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
mapdpglem.x |
|- ( ph -> X e. V ) |
10 |
|
mapdpglem.y |
|- ( ph -> Y e. V ) |
11 |
|
mapdpglem1.p |
|- .(+) = ( LSSum ` C ) |
12 |
|
mapdpglem2.j |
|- J = ( LSpan ` C ) |
13 |
|
mapdpglem3.f |
|- F = ( Base ` C ) |
14 |
|
mapdpglem3.te |
|- ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) |
15 |
1 7 8
|
lcdlmod |
|- ( ph -> C e. LMod ) |
16 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
17 |
|
eqid |
|- ( LSubSp ` C ) = ( LSubSp ` C ) |
18 |
1 3 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
19 |
4 16 6
|
lspsncl |
|- ( ( U e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
20 |
18 9 19
|
syl2anc |
|- ( ph -> ( N ` { X } ) e. ( LSubSp ` U ) ) |
21 |
1 2 3 16 7 17 8 20
|
mapdcl2 |
|- ( ph -> ( M ` ( N ` { X } ) ) e. ( LSubSp ` C ) ) |
22 |
4 16 6
|
lspsncl |
|- ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
23 |
18 10 22
|
syl2anc |
|- ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) |
24 |
1 2 3 16 7 17 8 23
|
mapdcl2 |
|- ( ph -> ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) ) |
25 |
17 11
|
lsmcl |
|- ( ( C e. LMod /\ ( M ` ( N ` { X } ) ) e. ( LSubSp ` C ) /\ ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) ) -> ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) e. ( LSubSp ` C ) ) |
26 |
15 21 24 25
|
syl3anc |
|- ( ph -> ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) e. ( LSubSp ` C ) ) |
27 |
13 17
|
lssel |
|- ( ( ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) e. ( LSubSp ` C ) /\ t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) -> t e. F ) |
28 |
26 14 27
|
syl2anc |
|- ( ph -> t e. F ) |