Metamath Proof Explorer


Theorem mapdpglem2a

Description: Lemma for mapdpg . (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
mapdpglem3.f F=BaseC
mapdpglem3.te φtMNX˙MNY
Assertion mapdpglem2a φtF

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 mapdpglem3.f F=BaseC
14 mapdpglem3.te φtMNX˙MNY
15 1 7 8 lcdlmod φCLMod
16 eqid LSubSpU=LSubSpU
17 eqid LSubSpC=LSubSpC
18 1 3 8 dvhlmod φULMod
19 4 16 6 lspsncl ULModXVNXLSubSpU
20 18 9 19 syl2anc φNXLSubSpU
21 1 2 3 16 7 17 8 20 mapdcl2 φMNXLSubSpC
22 4 16 6 lspsncl ULModYVNYLSubSpU
23 18 10 22 syl2anc φNYLSubSpU
24 1 2 3 16 7 17 8 23 mapdcl2 φMNYLSubSpC
25 17 11 lsmcl CLModMNXLSubSpCMNYLSubSpCMNX˙MNYLSubSpC
26 15 21 24 25 syl3anc φMNX˙MNYLSubSpC
27 13 17 lssel MNX˙MNYLSubSpCtMNX˙MNYtF
28 26 14 27 syl2anc φtF