Step |
Hyp |
Ref |
Expression |
1 |
|
mapdpglem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdpglem.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdpglem.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
mapdpglem.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
mapdpglem.s |
⊢ − = ( -g ‘ 𝑈 ) |
6 |
|
mapdpglem.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
mapdpglem.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
mapdpglem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
mapdpglem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
mapdpglem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
11 |
|
mapdpglem1.p |
⊢ ⊕ = ( LSSum ‘ 𝐶 ) |
12 |
|
mapdpglem2.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
13 |
|
mapdpglem3.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
14 |
|
mapdpglem3.te |
⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
15 |
1 7 8
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
16 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
17 |
|
eqid |
⊢ ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 ) |
18 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
19 |
4 16 6
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
20 |
18 9 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
21 |
1 2 3 16 7 17 8 20
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
22 |
4 16 6
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
23 |
18 10 22
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
24 |
1 2 3 16 7 17 8 23
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
25 |
17 11
|
lsmcl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
26 |
15 21 24 25
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
27 |
13 17
|
lssel |
⊢ ( ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ∈ ( LSubSp ‘ 𝐶 ) ∧ 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) → 𝑡 ∈ 𝐹 ) |
28 |
26 14 27
|
syl2anc |
⊢ ( 𝜑 → 𝑡 ∈ 𝐹 ) |