| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpglem.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | mapdpglem.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 3 |  | mapdpglem.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | mapdpglem.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | mapdpglem.s |  |-  .- = ( -g ` U ) | 
						
							| 6 |  | mapdpglem.n |  |-  N = ( LSpan ` U ) | 
						
							| 7 |  | mapdpglem.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | mapdpglem.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | mapdpglem.x |  |-  ( ph -> X e. V ) | 
						
							| 10 |  | mapdpglem.y |  |-  ( ph -> Y e. V ) | 
						
							| 11 |  | mapdpglem1.p |  |-  .(+) = ( LSSum ` C ) | 
						
							| 12 |  | mapdpglem2.j |  |-  J = ( LSpan ` C ) | 
						
							| 13 |  | mapdpglem3.f |  |-  F = ( Base ` C ) | 
						
							| 14 |  | mapdpglem3.te |  |-  ( ph -> t e. ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) ) | 
						
							| 15 |  | mapdpglem3.a |  |-  A = ( Scalar ` U ) | 
						
							| 16 |  | mapdpglem3.b |  |-  B = ( Base ` A ) | 
						
							| 17 |  | mapdpglem3.t |  |-  .x. = ( .s ` C ) | 
						
							| 18 |  | mapdpglem3.r |  |-  R = ( -g ` C ) | 
						
							| 19 |  | mapdpglem3.g |  |-  ( ph -> G e. F ) | 
						
							| 20 |  | mapdpglem3.e |  |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { G } ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ph -> ( ( M ` ( N ` { X } ) ) .(+) ( M ` ( N ` { Y } ) ) ) = ( ( J ` { G } ) .(+) ( M ` ( N ` { Y } ) ) ) ) | 
						
							| 22 | 14 21 | eleqtrd |  |-  ( ph -> t e. ( ( J ` { G } ) .(+) ( M ` ( N ` { Y } ) ) ) ) | 
						
							| 23 |  | r19.41v |  |-  ( E. g e. B ( w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) <-> ( E. g e. B w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) ) | 
						
							| 24 | 1 7 8 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 25 |  | eqid |  |-  ( Scalar ` C ) = ( Scalar ` C ) | 
						
							| 26 |  | eqid |  |-  ( Base ` ( Scalar ` C ) ) = ( Base ` ( Scalar ` C ) ) | 
						
							| 27 | 25 26 13 17 12 | ellspsn |  |-  ( ( C e. LMod /\ G e. F ) -> ( w e. ( J ` { G } ) <-> E. g e. ( Base ` ( Scalar ` C ) ) w = ( g .x. G ) ) ) | 
						
							| 28 | 24 19 27 | syl2anc |  |-  ( ph -> ( w e. ( J ` { G } ) <-> E. g e. ( Base ` ( Scalar ` C ) ) w = ( g .x. G ) ) ) | 
						
							| 29 | 1 3 15 16 7 25 26 8 | lcdsbase |  |-  ( ph -> ( Base ` ( Scalar ` C ) ) = B ) | 
						
							| 30 | 29 | rexeqdv |  |-  ( ph -> ( E. g e. ( Base ` ( Scalar ` C ) ) w = ( g .x. G ) <-> E. g e. B w = ( g .x. G ) ) ) | 
						
							| 31 | 28 30 | bitrd |  |-  ( ph -> ( w e. ( J ` { G } ) <-> E. g e. B w = ( g .x. G ) ) ) | 
						
							| 32 | 31 | anbi1d |  |-  ( ph -> ( ( w e. ( J ` { G } ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) <-> ( E. g e. B w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) ) ) | 
						
							| 33 | 23 32 | bitr4id |  |-  ( ph -> ( E. g e. B ( w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) <-> ( w e. ( J ` { G } ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) ) ) | 
						
							| 34 | 33 | exbidv |  |-  ( ph -> ( E. w E. g e. B ( w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) <-> E. w ( w e. ( J ` { G } ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) ) ) | 
						
							| 35 |  | df-rex |  |-  ( E. w e. ( J ` { G } ) E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) <-> E. w ( w e. ( J ` { G } ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) ) | 
						
							| 36 | 34 35 | bitr4di |  |-  ( ph -> ( E. w E. g e. B ( w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) <-> E. w e. ( J ` { G } ) E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) ) | 
						
							| 37 |  | eqid |  |-  ( LSubSp ` C ) = ( LSubSp ` C ) | 
						
							| 38 | 37 | lsssssubg |  |-  ( C e. LMod -> ( LSubSp ` C ) C_ ( SubGrp ` C ) ) | 
						
							| 39 | 24 38 | syl |  |-  ( ph -> ( LSubSp ` C ) C_ ( SubGrp ` C ) ) | 
						
							| 40 | 13 37 12 | lspsncl |  |-  ( ( C e. LMod /\ G e. F ) -> ( J ` { G } ) e. ( LSubSp ` C ) ) | 
						
							| 41 | 24 19 40 | syl2anc |  |-  ( ph -> ( J ` { G } ) e. ( LSubSp ` C ) ) | 
						
							| 42 | 39 41 | sseldd |  |-  ( ph -> ( J ` { G } ) e. ( SubGrp ` C ) ) | 
						
							| 43 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 44 | 1 3 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 45 | 4 43 6 | lspsncl |  |-  ( ( U e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 46 | 44 10 45 | syl2anc |  |-  ( ph -> ( N ` { Y } ) e. ( LSubSp ` U ) ) | 
						
							| 47 | 1 2 3 43 7 37 8 46 | mapdcl2 |  |-  ( ph -> ( M ` ( N ` { Y } ) ) e. ( LSubSp ` C ) ) | 
						
							| 48 | 39 47 | sseldd |  |-  ( ph -> ( M ` ( N ` { Y } ) ) e. ( SubGrp ` C ) ) | 
						
							| 49 | 18 11 42 48 | lsmelvalm |  |-  ( ph -> ( t e. ( ( J ` { G } ) .(+) ( M ` ( N ` { Y } ) ) ) <-> E. w e. ( J ` { G } ) E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) ) | 
						
							| 50 | 36 49 | bitr4d |  |-  ( ph -> ( E. w E. g e. B ( w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) <-> t e. ( ( J ` { G } ) .(+) ( M ` ( N ` { Y } ) ) ) ) ) | 
						
							| 51 | 22 50 | mpbird |  |-  ( ph -> E. w E. g e. B ( w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) ) | 
						
							| 52 |  | ovex |  |-  ( g .x. G ) e. _V | 
						
							| 53 |  | oveq1 |  |-  ( w = ( g .x. G ) -> ( w R z ) = ( ( g .x. G ) R z ) ) | 
						
							| 54 | 53 | eqeq2d |  |-  ( w = ( g .x. G ) -> ( t = ( w R z ) <-> t = ( ( g .x. G ) R z ) ) ) | 
						
							| 55 | 54 | rexbidv |  |-  ( w = ( g .x. G ) -> ( E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) <-> E. z e. ( M ` ( N ` { Y } ) ) t = ( ( g .x. G ) R z ) ) ) | 
						
							| 56 | 52 55 | ceqsexv |  |-  ( E. w ( w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) <-> E. z e. ( M ` ( N ` { Y } ) ) t = ( ( g .x. G ) R z ) ) | 
						
							| 57 | 56 | rexbii |  |-  ( E. g e. B E. w ( w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) <-> E. g e. B E. z e. ( M ` ( N ` { Y } ) ) t = ( ( g .x. G ) R z ) ) | 
						
							| 58 |  | rexcom4 |  |-  ( E. g e. B E. w ( w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) <-> E. w E. g e. B ( w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) ) | 
						
							| 59 | 57 58 | bitr3i |  |-  ( E. g e. B E. z e. ( M ` ( N ` { Y } ) ) t = ( ( g .x. G ) R z ) <-> E. w E. g e. B ( w = ( g .x. G ) /\ E. z e. ( M ` ( N ` { Y } ) ) t = ( w R z ) ) ) | 
						
							| 60 | 51 59 | sylibr |  |-  ( ph -> E. g e. B E. z e. ( M ` ( N ` { Y } ) ) t = ( ( g .x. G ) R z ) ) |