| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpglem.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdpglem.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdpglem.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdpglem.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | mapdpglem.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 6 |  | mapdpglem.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 7 |  | mapdpglem.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | mapdpglem.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | mapdpglem.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | mapdpglem.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 11 |  | mapdpglem1.p | ⊢  ⊕   =  ( LSSum ‘ 𝐶 ) | 
						
							| 12 |  | mapdpglem2.j | ⊢ 𝐽  =  ( LSpan ‘ 𝐶 ) | 
						
							| 13 |  | mapdpglem3.f | ⊢ 𝐹  =  ( Base ‘ 𝐶 ) | 
						
							| 14 |  | mapdpglem3.te | ⊢ ( 𝜑  →  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  ⊕  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 15 |  | mapdpglem3.a | ⊢ 𝐴  =  ( Scalar ‘ 𝑈 ) | 
						
							| 16 |  | mapdpglem3.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 17 |  | mapdpglem3.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 18 |  | mapdpglem3.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 19 |  | mapdpglem3.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 20 |  | mapdpglem3.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 21 |  | mapdpglem4.q | ⊢ 𝑄  =  ( 0g ‘ 𝑈 ) | 
						
							| 22 |  | mapdpglem.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 23 |  | mapdpglem4.jt | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) ) | 
						
							| 24 |  | eqid | ⊢ ( LSAtoms ‘ 𝑈 )  =  ( LSAtoms ‘ 𝑈 ) | 
						
							| 25 |  | eqid | ⊢ ( LSAtoms ‘ 𝐶 )  =  ( LSAtoms ‘ 𝐶 ) | 
						
							| 26 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | mapdpglem4N | ⊢ ( 𝜑  →  ( 𝑋  −  𝑌 )  ≠  𝑄 ) | 
						
							| 27 | 1 3 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 28 | 4 5 | lmodvsubcl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  −  𝑌 )  ∈  𝑉 ) | 
						
							| 29 | 27 9 10 28 | syl3anc | ⊢ ( 𝜑  →  ( 𝑋  −  𝑌 )  ∈  𝑉 ) | 
						
							| 30 | 4 6 21 24 27 29 | lsatspn0 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } )  ∈  ( LSAtoms ‘ 𝑈 )  ↔  ( 𝑋  −  𝑌 )  ≠  𝑄 ) ) | 
						
							| 31 | 26 30 | mpbird | ⊢ ( 𝜑  →  ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } )  ∈  ( LSAtoms ‘ 𝑈 ) ) | 
						
							| 32 | 1 2 3 24 7 25 8 31 | mapdat | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  ∈  ( LSAtoms ‘ 𝐶 ) ) | 
						
							| 33 | 23 32 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝐽 ‘ { 𝑡 } )  ∈  ( LSAtoms ‘ 𝐶 ) ) | 
						
							| 34 |  | eqid | ⊢ ( 0g ‘ 𝐶 )  =  ( 0g ‘ 𝐶 ) | 
						
							| 35 | 1 7 8 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | mapdpglem2a | ⊢ ( 𝜑  →  𝑡  ∈  𝐹 ) | 
						
							| 37 | 13 12 34 25 35 36 | lsatspn0 | ⊢ ( 𝜑  →  ( ( 𝐽 ‘ { 𝑡 } )  ∈  ( LSAtoms ‘ 𝐶 )  ↔  𝑡  ≠  ( 0g ‘ 𝐶 ) ) ) | 
						
							| 38 | 33 37 | mpbid | ⊢ ( 𝜑  →  𝑡  ≠  ( 0g ‘ 𝐶 ) ) |