| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdpglem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdpglem.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdpglem.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
mapdpglem.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
mapdpglem.s |
⊢ − = ( -g ‘ 𝑈 ) |
| 6 |
|
mapdpglem.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
mapdpglem.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
mapdpglem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
mapdpglem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
mapdpglem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 11 |
|
mapdpglem1.p |
⊢ ⊕ = ( LSSum ‘ 𝐶 ) |
| 12 |
|
mapdpglem2.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
| 13 |
|
mapdpglem3.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
| 14 |
|
mapdpglem3.te |
⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 15 |
|
mapdpglem3.a |
⊢ 𝐴 = ( Scalar ‘ 𝑈 ) |
| 16 |
|
mapdpglem3.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 17 |
|
mapdpglem3.t |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
| 18 |
|
mapdpglem3.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
| 19 |
|
mapdpglem3.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 20 |
|
mapdpglem3.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
| 21 |
|
mapdpglem4.q |
⊢ 𝑄 = ( 0g ‘ 𝑈 ) |
| 22 |
|
mapdpglem.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 23 |
|
mapdpglem4.jt |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) |
| 24 |
|
mapdpglem4.z |
⊢ 0 = ( 0g ‘ 𝐴 ) |
| 25 |
|
mapdpglem4.g4 |
⊢ ( 𝜑 → 𝑔 ∈ 𝐵 ) |
| 26 |
|
mapdpglem4.z4 |
⊢ ( 𝜑 → 𝑧 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 27 |
|
mapdpglem4.t4 |
⊢ ( 𝜑 → 𝑡 = ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) ) |
| 28 |
|
mapdpglem4.xn |
⊢ ( 𝜑 → 𝑋 ≠ 𝑄 ) |
| 29 |
|
mapdpglem4.g0 |
⊢ ( 𝜑 → 𝑔 = 0 ) |
| 30 |
1 7 8
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 31 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 32 |
|
eqid |
⊢ ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 ) |
| 33 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 34 |
4 31 6
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 35 |
33 10 34
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 36 |
1 2 3 31 7 32 8 35
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 37 |
29
|
oveq1d |
⊢ ( 𝜑 → ( 𝑔 · 𝐺 ) = ( 0 · 𝐺 ) ) |
| 38 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
| 39 |
1 3 15 24 7 13 17 38 8 19
|
lcd0vs |
⊢ ( 𝜑 → ( 0 · 𝐺 ) = ( 0g ‘ 𝐶 ) ) |
| 40 |
37 39
|
eqtrd |
⊢ ( 𝜑 → ( 𝑔 · 𝐺 ) = ( 0g ‘ 𝐶 ) ) |
| 41 |
38 32
|
lss0cl |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) → ( 0g ‘ 𝐶 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 42 |
30 36 41
|
syl2anc |
⊢ ( 𝜑 → ( 0g ‘ 𝐶 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 43 |
40 42
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑔 · 𝐺 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 44 |
18 32
|
lssvsubcl |
⊢ ( ( ( 𝐶 ∈ LMod ∧ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) ∧ ( ( 𝑔 · 𝐺 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∧ 𝑧 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) → ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 45 |
30 36 43 26 44
|
syl22anc |
⊢ ( 𝜑 → ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 46 |
27 45
|
eqeltrd |
⊢ ( 𝜑 → 𝑡 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |