Metamath Proof Explorer


Theorem mapdpglem8

Description: Lemma for mapdpg . Baer p. 45, line 4: "...so that (F(x-y))* <= (Fy)*. This would imply that F(x-y) <= F(y)..." (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h โŠข ๐ป = ( LHyp โ€˜ ๐พ )
mapdpglem.m โŠข ๐‘€ = ( ( mapd โ€˜ ๐พ ) โ€˜ ๐‘Š )
mapdpglem.u โŠข ๐‘ˆ = ( ( DVecH โ€˜ ๐พ ) โ€˜ ๐‘Š )
mapdpglem.v โŠข ๐‘‰ = ( Base โ€˜ ๐‘ˆ )
mapdpglem.s โŠข โˆ’ = ( -g โ€˜ ๐‘ˆ )
mapdpglem.n โŠข ๐‘ = ( LSpan โ€˜ ๐‘ˆ )
mapdpglem.c โŠข ๐ถ = ( ( LCDual โ€˜ ๐พ ) โ€˜ ๐‘Š )
mapdpglem.k โŠข ( ๐œ‘ โ†’ ( ๐พ โˆˆ HL โˆง ๐‘Š โˆˆ ๐ป ) )
mapdpglem.x โŠข ( ๐œ‘ โ†’ ๐‘‹ โˆˆ ๐‘‰ )
mapdpglem.y โŠข ( ๐œ‘ โ†’ ๐‘Œ โˆˆ ๐‘‰ )
mapdpglem1.p โŠข โŠ• = ( LSSum โ€˜ ๐ถ )
mapdpglem2.j โŠข ๐ฝ = ( LSpan โ€˜ ๐ถ )
mapdpglem3.f โŠข ๐น = ( Base โ€˜ ๐ถ )
mapdpglem3.te โŠข ( ๐œ‘ โ†’ ๐‘ก โˆˆ ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘‹ } ) ) โŠ• ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) ) )
mapdpglem3.a โŠข ๐ด = ( Scalar โ€˜ ๐‘ˆ )
mapdpglem3.b โŠข ๐ต = ( Base โ€˜ ๐ด )
mapdpglem3.t โŠข ยท = ( ยท๐‘  โ€˜ ๐ถ )
mapdpglem3.r โŠข ๐‘… = ( -g โ€˜ ๐ถ )
mapdpglem3.g โŠข ( ๐œ‘ โ†’ ๐บ โˆˆ ๐น )
mapdpglem3.e โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘‹ } ) ) = ( ๐ฝ โ€˜ { ๐บ } ) )
mapdpglem4.q โŠข ๐‘„ = ( 0g โ€˜ ๐‘ˆ )
mapdpglem.ne โŠข ( ๐œ‘ โ†’ ( ๐‘ โ€˜ { ๐‘‹ } ) โ‰  ( ๐‘ โ€˜ { ๐‘Œ } ) )
mapdpglem4.jt โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ๐‘ก } ) )
mapdpglem4.z โŠข 0 = ( 0g โ€˜ ๐ด )
mapdpglem4.g4 โŠข ( ๐œ‘ โ†’ ๐‘” โˆˆ ๐ต )
mapdpglem4.z4 โŠข ( ๐œ‘ โ†’ ๐‘ง โˆˆ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) )
mapdpglem4.t4 โŠข ( ๐œ‘ โ†’ ๐‘ก = ( ( ๐‘” ยท ๐บ ) ๐‘… ๐‘ง ) )
mapdpglem4.xn โŠข ( ๐œ‘ โ†’ ๐‘‹ โ‰  ๐‘„ )
mapdpglem4.g0 โŠข ( ๐œ‘ โ†’ ๐‘” = 0 )
Assertion mapdpglem8 ( ๐œ‘ โ†’ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) โІ ( ๐‘ โ€˜ { ๐‘Œ } ) )

Proof

Step Hyp Ref Expression
1 mapdpglem.h โŠข ๐ป = ( LHyp โ€˜ ๐พ )
2 mapdpglem.m โŠข ๐‘€ = ( ( mapd โ€˜ ๐พ ) โ€˜ ๐‘Š )
3 mapdpglem.u โŠข ๐‘ˆ = ( ( DVecH โ€˜ ๐พ ) โ€˜ ๐‘Š )
4 mapdpglem.v โŠข ๐‘‰ = ( Base โ€˜ ๐‘ˆ )
5 mapdpglem.s โŠข โˆ’ = ( -g โ€˜ ๐‘ˆ )
6 mapdpglem.n โŠข ๐‘ = ( LSpan โ€˜ ๐‘ˆ )
7 mapdpglem.c โŠข ๐ถ = ( ( LCDual โ€˜ ๐พ ) โ€˜ ๐‘Š )
8 mapdpglem.k โŠข ( ๐œ‘ โ†’ ( ๐พ โˆˆ HL โˆง ๐‘Š โˆˆ ๐ป ) )
9 mapdpglem.x โŠข ( ๐œ‘ โ†’ ๐‘‹ โˆˆ ๐‘‰ )
10 mapdpglem.y โŠข ( ๐œ‘ โ†’ ๐‘Œ โˆˆ ๐‘‰ )
11 mapdpglem1.p โŠข โŠ• = ( LSSum โ€˜ ๐ถ )
12 mapdpglem2.j โŠข ๐ฝ = ( LSpan โ€˜ ๐ถ )
13 mapdpglem3.f โŠข ๐น = ( Base โ€˜ ๐ถ )
14 mapdpglem3.te โŠข ( ๐œ‘ โ†’ ๐‘ก โˆˆ ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘‹ } ) ) โŠ• ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) ) )
15 mapdpglem3.a โŠข ๐ด = ( Scalar โ€˜ ๐‘ˆ )
16 mapdpglem3.b โŠข ๐ต = ( Base โ€˜ ๐ด )
17 mapdpglem3.t โŠข ยท = ( ยท๐‘  โ€˜ ๐ถ )
18 mapdpglem3.r โŠข ๐‘… = ( -g โ€˜ ๐ถ )
19 mapdpglem3.g โŠข ( ๐œ‘ โ†’ ๐บ โˆˆ ๐น )
20 mapdpglem3.e โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘‹ } ) ) = ( ๐ฝ โ€˜ { ๐บ } ) )
21 mapdpglem4.q โŠข ๐‘„ = ( 0g โ€˜ ๐‘ˆ )
22 mapdpglem.ne โŠข ( ๐œ‘ โ†’ ( ๐‘ โ€˜ { ๐‘‹ } ) โ‰  ( ๐‘ โ€˜ { ๐‘Œ } ) )
23 mapdpglem4.jt โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ๐‘ก } ) )
24 mapdpglem4.z โŠข 0 = ( 0g โ€˜ ๐ด )
25 mapdpglem4.g4 โŠข ( ๐œ‘ โ†’ ๐‘” โˆˆ ๐ต )
26 mapdpglem4.z4 โŠข ( ๐œ‘ โ†’ ๐‘ง โˆˆ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) )
27 mapdpglem4.t4 โŠข ( ๐œ‘ โ†’ ๐‘ก = ( ( ๐‘” ยท ๐บ ) ๐‘… ๐‘ง ) )
28 mapdpglem4.xn โŠข ( ๐œ‘ โ†’ ๐‘‹ โ‰  ๐‘„ )
29 mapdpglem4.g0 โŠข ( ๐œ‘ โ†’ ๐‘” = 0 )
30 eqid โŠข ( LSubSp โ€˜ ๐ถ ) = ( LSubSp โ€˜ ๐ถ )
31 1 7 8 lcdlmod โŠข ( ๐œ‘ โ†’ ๐ถ โˆˆ LMod )
32 eqid โŠข ( LSubSp โ€˜ ๐‘ˆ ) = ( LSubSp โ€˜ ๐‘ˆ )
33 1 3 8 dvhlmod โŠข ( ๐œ‘ โ†’ ๐‘ˆ โˆˆ LMod )
34 4 32 6 lspsncl โŠข ( ( ๐‘ˆ โˆˆ LMod โˆง ๐‘Œ โˆˆ ๐‘‰ ) โ†’ ( ๐‘ โ€˜ { ๐‘Œ } ) โˆˆ ( LSubSp โ€˜ ๐‘ˆ ) )
35 33 10 34 syl2anc โŠข ( ๐œ‘ โ†’ ( ๐‘ โ€˜ { ๐‘Œ } ) โˆˆ ( LSubSp โ€˜ ๐‘ˆ ) )
36 1 2 3 32 7 30 8 35 mapdcl2 โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) โˆˆ ( LSubSp โ€˜ ๐ถ ) )
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 mapdpglem6 โŠข ( ๐œ‘ โ†’ ๐‘ก โˆˆ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) )
38 30 12 31 36 37 lspsnel5a โŠข ( ๐œ‘ โ†’ ( ๐ฝ โ€˜ { ๐‘ก } ) โІ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) )
39 23 38 eqsstrd โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) โІ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) )
40 4 5 lmodvsubcl โŠข ( ( ๐‘ˆ โˆˆ LMod โˆง ๐‘‹ โˆˆ ๐‘‰ โˆง ๐‘Œ โˆˆ ๐‘‰ ) โ†’ ( ๐‘‹ โˆ’ ๐‘Œ ) โˆˆ ๐‘‰ )
41 33 9 10 40 syl3anc โŠข ( ๐œ‘ โ†’ ( ๐‘‹ โˆ’ ๐‘Œ ) โˆˆ ๐‘‰ )
42 4 32 6 lspsncl โŠข ( ( ๐‘ˆ โˆˆ LMod โˆง ( ๐‘‹ โˆ’ ๐‘Œ ) โˆˆ ๐‘‰ ) โ†’ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) โˆˆ ( LSubSp โ€˜ ๐‘ˆ ) )
43 33 41 42 syl2anc โŠข ( ๐œ‘ โ†’ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) โˆˆ ( LSubSp โ€˜ ๐‘ˆ ) )
44 1 3 32 2 8 43 35 mapdord โŠข ( ๐œ‘ โ†’ ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) โІ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) โ†” ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) โІ ( ๐‘ โ€˜ { ๐‘Œ } ) ) )
45 39 44 mpbid โŠข ( ๐œ‘ โ†’ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) โІ ( ๐‘ โ€˜ { ๐‘Œ } ) )