Metamath Proof Explorer


Theorem mapdpglem6

Description: Lemma for mapdpg . Baer p. 45, line 4: "If g were 0, then t would be in (Fy)*..." (Contributed by NM, 18-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
mapdpglem3.f F=BaseC
mapdpglem3.te φtMNX˙MNY
mapdpglem3.a A=ScalarU
mapdpglem3.b B=BaseA
mapdpglem3.t ·˙=C
mapdpglem3.r R=-C
mapdpglem3.g φGF
mapdpglem3.e φMNX=JG
mapdpglem4.q Q=0U
mapdpglem.ne φNXNY
mapdpglem4.jt φMNX-˙Y=Jt
mapdpglem4.z 0˙=0A
mapdpglem4.g4 φgB
mapdpglem4.z4 φzMNY
mapdpglem4.t4 φt=g·˙GRz
mapdpglem4.xn φXQ
mapdpglem4.g0 φg=0˙
Assertion mapdpglem6 φtMNY

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 mapdpglem3.f F=BaseC
14 mapdpglem3.te φtMNX˙MNY
15 mapdpglem3.a A=ScalarU
16 mapdpglem3.b B=BaseA
17 mapdpglem3.t ·˙=C
18 mapdpglem3.r R=-C
19 mapdpglem3.g φGF
20 mapdpglem3.e φMNX=JG
21 mapdpglem4.q Q=0U
22 mapdpglem.ne φNXNY
23 mapdpglem4.jt φMNX-˙Y=Jt
24 mapdpglem4.z 0˙=0A
25 mapdpglem4.g4 φgB
26 mapdpglem4.z4 φzMNY
27 mapdpglem4.t4 φt=g·˙GRz
28 mapdpglem4.xn φXQ
29 mapdpglem4.g0 φg=0˙
30 1 7 8 lcdlmod φCLMod
31 eqid LSubSpU=LSubSpU
32 eqid LSubSpC=LSubSpC
33 1 3 8 dvhlmod φULMod
34 4 31 6 lspsncl ULModYVNYLSubSpU
35 33 10 34 syl2anc φNYLSubSpU
36 1 2 3 31 7 32 8 35 mapdcl2 φMNYLSubSpC
37 29 oveq1d φg·˙G=0˙·˙G
38 eqid 0C=0C
39 1 3 15 24 7 13 17 38 8 19 lcd0vs φ0˙·˙G=0C
40 37 39 eqtrd φg·˙G=0C
41 38 32 lss0cl CLModMNYLSubSpC0CMNY
42 30 36 41 syl2anc φ0CMNY
43 40 42 eqeltrd φg·˙GMNY
44 18 32 lssvsubcl CLModMNYLSubSpCg·˙GMNYzMNYg·˙GRzMNY
45 30 36 43 26 44 syl22anc φg·˙GRzMNY
46 27 45 eqeltrd φtMNY