Metamath Proof Explorer


Theorem mapdpglem5N

Description: Lemma for mapdpg . (Contributed by NM, 20-Mar-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
mapdpglem3.f F=BaseC
mapdpglem3.te φtMNX˙MNY
mapdpglem3.a A=ScalarU
mapdpglem3.b B=BaseA
mapdpglem3.t ·˙=C
mapdpglem3.r R=-C
mapdpglem3.g φGF
mapdpglem3.e φMNX=JG
mapdpglem4.q Q=0U
mapdpglem.ne φNXNY
mapdpglem4.jt φMNX-˙Y=Jt
Assertion mapdpglem5N φt0C

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 mapdpglem3.f F=BaseC
14 mapdpglem3.te φtMNX˙MNY
15 mapdpglem3.a A=ScalarU
16 mapdpglem3.b B=BaseA
17 mapdpglem3.t ·˙=C
18 mapdpglem3.r R=-C
19 mapdpglem3.g φGF
20 mapdpglem3.e φMNX=JG
21 mapdpglem4.q Q=0U
22 mapdpglem.ne φNXNY
23 mapdpglem4.jt φMNX-˙Y=Jt
24 eqid LSAtomsU=LSAtomsU
25 eqid LSAtomsC=LSAtomsC
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 mapdpglem4N φX-˙YQ
27 1 3 8 dvhlmod φULMod
28 4 5 lmodvsubcl ULModXVYVX-˙YV
29 27 9 10 28 syl3anc φX-˙YV
30 4 6 21 24 27 29 lsatspn0 φNX-˙YLSAtomsUX-˙YQ
31 26 30 mpbird φNX-˙YLSAtomsU
32 1 2 3 24 7 25 8 31 mapdat φMNX-˙YLSAtomsC
33 23 32 eqeltrrd φJtLSAtomsC
34 eqid 0C=0C
35 1 7 8 lcdlmod φCLMod
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 mapdpglem2a φtF
37 13 12 34 25 35 36 lsatspn0 φJtLSAtomsCt0C
38 33 37 mpbid φt0C