Metamath Proof Explorer


Theorem lspsnsubn0

Description: Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015)

Ref Expression
Hypotheses lspsnsubn0.v 𝑉 = ( Base ‘ 𝑊 )
lspsnsubn0.o 0 = ( 0g𝑊 )
lspsnsubn0.m = ( -g𝑊 )
lspsnsubn0.w ( 𝜑𝑊 ∈ LMod )
lspsnsubn0.x ( 𝜑𝑋𝑉 )
lspsnsubn0.y ( 𝜑𝑌𝑉 )
lspsnsubn0.e ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
Assertion lspsnsubn0 ( 𝜑 → ( 𝑋 𝑌 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 lspsnsubn0.v 𝑉 = ( Base ‘ 𝑊 )
2 lspsnsubn0.o 0 = ( 0g𝑊 )
3 lspsnsubn0.m = ( -g𝑊 )
4 lspsnsubn0.w ( 𝜑𝑊 ∈ LMod )
5 lspsnsubn0.x ( 𝜑𝑋𝑉 )
6 lspsnsubn0.y ( 𝜑𝑌𝑉 )
7 lspsnsubn0.e ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
8 1 2 3 lmodsubeq0 ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉 ) → ( ( 𝑋 𝑌 ) = 0𝑋 = 𝑌 ) )
9 4 5 6 8 syl3anc ( 𝜑 → ( ( 𝑋 𝑌 ) = 0𝑋 = 𝑌 ) )
10 sneq ( 𝑋 = 𝑌 → { 𝑋 } = { 𝑌 } )
11 10 fveq2d ( 𝑋 = 𝑌 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) )
12 9 11 syl6bi ( 𝜑 → ( ( 𝑋 𝑌 ) = 0 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) )
13 12 necon3d ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑋 𝑌 ) ≠ 0 ) )
14 7 13 mpd ( 𝜑 → ( 𝑋 𝑌 ) ≠ 0 )