| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdpglem.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdpglem.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdpglem.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | mapdpglem.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | mapdpglem.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 6 |  | mapdpglem.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 7 |  | mapdpglem.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | mapdpglem.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | mapdpglem.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | mapdpglem.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 11 |  | mapdpglem1.p | ⊢  ⊕   =  ( LSSum ‘ 𝐶 ) | 
						
							| 12 |  | mapdpglem2.j | ⊢ 𝐽  =  ( LSpan ‘ 𝐶 ) | 
						
							| 13 |  | mapdpglem3.f | ⊢ 𝐹  =  ( Base ‘ 𝐶 ) | 
						
							| 14 |  | mapdpglem3.te | ⊢ ( 𝜑  →  𝑡  ∈  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  ⊕  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) | 
						
							| 15 |  | mapdpglem3.a | ⊢ 𝐴  =  ( Scalar ‘ 𝑈 ) | 
						
							| 16 |  | mapdpglem3.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 17 |  | mapdpglem3.t | ⊢  ·   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 18 |  | mapdpglem3.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 19 |  | mapdpglem3.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐹 ) | 
						
							| 20 |  | mapdpglem3.e | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 21 |  | mapdpglem4.q | ⊢ 𝑄  =  ( 0g ‘ 𝑈 ) | 
						
							| 22 |  | mapdpglem.ne | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 23 |  | mapdpglem4.jt | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { 𝑡 } ) ) | 
						
							| 24 |  | mapdpglem4.z | ⊢  0   =  ( 0g ‘ 𝐴 ) | 
						
							| 25 |  | mapdpglem4.g4 | ⊢ ( 𝜑  →  𝑔  ∈  𝐵 ) | 
						
							| 26 |  | mapdpglem4.z4 | ⊢ ( 𝜑  →  𝑧  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 27 |  | mapdpglem4.t4 | ⊢ ( 𝜑  →  𝑡  =  ( ( 𝑔  ·  𝐺 ) 𝑅 𝑧 ) ) | 
						
							| 28 |  | mapdpglem4.xn | ⊢ ( 𝜑  →  𝑋  ≠  𝑄 ) | 
						
							| 29 |  | mapdpglem12.yn | ⊢ ( 𝜑  →  𝑌  ≠  𝑄 ) | 
						
							| 30 |  | mapdpglem17.ep | ⊢ 𝐸  =  ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 )  ·  𝑧 ) | 
						
							| 31 |  | eqid | ⊢ ( LSubSp ‘ 𝑈 )  =  ( LSubSp ‘ 𝑈 ) | 
						
							| 32 |  | eqid | ⊢ ( LSubSp ‘ 𝐶 )  =  ( LSubSp ‘ 𝐶 ) | 
						
							| 33 | 1 3 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 34 | 4 31 6 | lspsncl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑌  ∈  𝑉 )  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 35 | 33 10 34 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ∈  ( LSubSp ‘ 𝑈 ) ) | 
						
							| 36 | 1 2 3 31 7 32 8 35 | mapdcl2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  ∈  ( LSubSp ‘ 𝐶 ) ) | 
						
							| 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | mapdpglem19 | ⊢ ( 𝜑  →  𝐸  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) | 
						
							| 38 | 13 32 | lssel | ⊢ ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  ∈  ( LSubSp ‘ 𝐶 )  ∧  𝐸  ∈  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )  →  𝐸  ∈  𝐹 ) | 
						
							| 39 | 36 37 38 | syl2anc | ⊢ ( 𝜑  →  𝐸  ∈  𝐹 ) | 
						
							| 40 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | mapdpglem20 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝐸 } ) ) | 
						
							| 41 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | mapdpglem22 | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝐸 ) } ) ) | 
						
							| 42 |  | sneq | ⊢ ( ℎ  =  𝐸  →  { ℎ }  =  { 𝐸 } ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( ℎ  =  𝐸  →  ( 𝐽 ‘ { ℎ } )  =  ( 𝐽 ‘ { 𝐸 } ) ) | 
						
							| 44 | 43 | eqeq2d | ⊢ ( ℎ  =  𝐸  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ↔  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝐸 } ) ) ) | 
						
							| 45 |  | oveq2 | ⊢ ( ℎ  =  𝐸  →  ( 𝐺 𝑅 ℎ )  =  ( 𝐺 𝑅 𝐸 ) ) | 
						
							| 46 | 45 | sneqd | ⊢ ( ℎ  =  𝐸  →  { ( 𝐺 𝑅 ℎ ) }  =  { ( 𝐺 𝑅 𝐸 ) } ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( ℎ  =  𝐸  →  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝐸 ) } ) ) | 
						
							| 48 | 47 | eqeq2d | ⊢ ( ℎ  =  𝐸  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } )  ↔  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝐸 ) } ) ) ) | 
						
							| 49 | 44 48 | anbi12d | ⊢ ( ℎ  =  𝐸  →  ( ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) )  ↔  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝐸 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝐸 ) } ) ) ) ) | 
						
							| 50 | 49 | rspcev | ⊢ ( ( 𝐸  ∈  𝐹  ∧  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝐸 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 𝐸 ) } ) ) )  →  ∃ ℎ  ∈  𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) | 
						
							| 51 | 39 40 41 50 | syl12anc | ⊢ ( 𝜑  →  ∃ ℎ  ∈  𝐹 ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐺 𝑅 ℎ ) } ) ) ) |