Metamath Proof Explorer


Theorem mapdpglem23

Description: Lemma for mapdpg . Baer p. 45, line 10: "and so y' meets all our requirements." Our h is Baer's y'. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h โŠข ๐ป = ( LHyp โ€˜ ๐พ )
mapdpglem.m โŠข ๐‘€ = ( ( mapd โ€˜ ๐พ ) โ€˜ ๐‘Š )
mapdpglem.u โŠข ๐‘ˆ = ( ( DVecH โ€˜ ๐พ ) โ€˜ ๐‘Š )
mapdpglem.v โŠข ๐‘‰ = ( Base โ€˜ ๐‘ˆ )
mapdpglem.s โŠข โˆ’ = ( -g โ€˜ ๐‘ˆ )
mapdpglem.n โŠข ๐‘ = ( LSpan โ€˜ ๐‘ˆ )
mapdpglem.c โŠข ๐ถ = ( ( LCDual โ€˜ ๐พ ) โ€˜ ๐‘Š )
mapdpglem.k โŠข ( ๐œ‘ โ†’ ( ๐พ โˆˆ HL โˆง ๐‘Š โˆˆ ๐ป ) )
mapdpglem.x โŠข ( ๐œ‘ โ†’ ๐‘‹ โˆˆ ๐‘‰ )
mapdpglem.y โŠข ( ๐œ‘ โ†’ ๐‘Œ โˆˆ ๐‘‰ )
mapdpglem1.p โŠข โŠ• = ( LSSum โ€˜ ๐ถ )
mapdpglem2.j โŠข ๐ฝ = ( LSpan โ€˜ ๐ถ )
mapdpglem3.f โŠข ๐น = ( Base โ€˜ ๐ถ )
mapdpglem3.te โŠข ( ๐œ‘ โ†’ ๐‘ก โˆˆ ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘‹ } ) ) โŠ• ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) ) )
mapdpglem3.a โŠข ๐ด = ( Scalar โ€˜ ๐‘ˆ )
mapdpglem3.b โŠข ๐ต = ( Base โ€˜ ๐ด )
mapdpglem3.t โŠข ยท = ( ยท๐‘  โ€˜ ๐ถ )
mapdpglem3.r โŠข ๐‘… = ( -g โ€˜ ๐ถ )
mapdpglem3.g โŠข ( ๐œ‘ โ†’ ๐บ โˆˆ ๐น )
mapdpglem3.e โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘‹ } ) ) = ( ๐ฝ โ€˜ { ๐บ } ) )
mapdpglem4.q โŠข ๐‘„ = ( 0g โ€˜ ๐‘ˆ )
mapdpglem.ne โŠข ( ๐œ‘ โ†’ ( ๐‘ โ€˜ { ๐‘‹ } ) โ‰  ( ๐‘ โ€˜ { ๐‘Œ } ) )
mapdpglem4.jt โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ๐‘ก } ) )
mapdpglem4.z โŠข 0 = ( 0g โ€˜ ๐ด )
mapdpglem4.g4 โŠข ( ๐œ‘ โ†’ ๐‘” โˆˆ ๐ต )
mapdpglem4.z4 โŠข ( ๐œ‘ โ†’ ๐‘ง โˆˆ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) )
mapdpglem4.t4 โŠข ( ๐œ‘ โ†’ ๐‘ก = ( ( ๐‘” ยท ๐บ ) ๐‘… ๐‘ง ) )
mapdpglem4.xn โŠข ( ๐œ‘ โ†’ ๐‘‹ โ‰  ๐‘„ )
mapdpglem12.yn โŠข ( ๐œ‘ โ†’ ๐‘Œ โ‰  ๐‘„ )
mapdpglem17.ep โŠข ๐ธ = ( ( ( invr โ€˜ ๐ด ) โ€˜ ๐‘” ) ยท ๐‘ง )
Assertion mapdpglem23 ( ๐œ‘ โ†’ โˆƒ โ„Ž โˆˆ ๐น ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) = ( ๐ฝ โ€˜ { โ„Ž } ) โˆง ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ( ๐บ ๐‘… โ„Ž ) } ) ) )

Proof

Step Hyp Ref Expression
1 mapdpglem.h โŠข ๐ป = ( LHyp โ€˜ ๐พ )
2 mapdpglem.m โŠข ๐‘€ = ( ( mapd โ€˜ ๐พ ) โ€˜ ๐‘Š )
3 mapdpglem.u โŠข ๐‘ˆ = ( ( DVecH โ€˜ ๐พ ) โ€˜ ๐‘Š )
4 mapdpglem.v โŠข ๐‘‰ = ( Base โ€˜ ๐‘ˆ )
5 mapdpglem.s โŠข โˆ’ = ( -g โ€˜ ๐‘ˆ )
6 mapdpglem.n โŠข ๐‘ = ( LSpan โ€˜ ๐‘ˆ )
7 mapdpglem.c โŠข ๐ถ = ( ( LCDual โ€˜ ๐พ ) โ€˜ ๐‘Š )
8 mapdpglem.k โŠข ( ๐œ‘ โ†’ ( ๐พ โˆˆ HL โˆง ๐‘Š โˆˆ ๐ป ) )
9 mapdpglem.x โŠข ( ๐œ‘ โ†’ ๐‘‹ โˆˆ ๐‘‰ )
10 mapdpglem.y โŠข ( ๐œ‘ โ†’ ๐‘Œ โˆˆ ๐‘‰ )
11 mapdpglem1.p โŠข โŠ• = ( LSSum โ€˜ ๐ถ )
12 mapdpglem2.j โŠข ๐ฝ = ( LSpan โ€˜ ๐ถ )
13 mapdpglem3.f โŠข ๐น = ( Base โ€˜ ๐ถ )
14 mapdpglem3.te โŠข ( ๐œ‘ โ†’ ๐‘ก โˆˆ ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘‹ } ) ) โŠ• ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) ) )
15 mapdpglem3.a โŠข ๐ด = ( Scalar โ€˜ ๐‘ˆ )
16 mapdpglem3.b โŠข ๐ต = ( Base โ€˜ ๐ด )
17 mapdpglem3.t โŠข ยท = ( ยท๐‘  โ€˜ ๐ถ )
18 mapdpglem3.r โŠข ๐‘… = ( -g โ€˜ ๐ถ )
19 mapdpglem3.g โŠข ( ๐œ‘ โ†’ ๐บ โˆˆ ๐น )
20 mapdpglem3.e โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘‹ } ) ) = ( ๐ฝ โ€˜ { ๐บ } ) )
21 mapdpglem4.q โŠข ๐‘„ = ( 0g โ€˜ ๐‘ˆ )
22 mapdpglem.ne โŠข ( ๐œ‘ โ†’ ( ๐‘ โ€˜ { ๐‘‹ } ) โ‰  ( ๐‘ โ€˜ { ๐‘Œ } ) )
23 mapdpglem4.jt โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ๐‘ก } ) )
24 mapdpglem4.z โŠข 0 = ( 0g โ€˜ ๐ด )
25 mapdpglem4.g4 โŠข ( ๐œ‘ โ†’ ๐‘” โˆˆ ๐ต )
26 mapdpglem4.z4 โŠข ( ๐œ‘ โ†’ ๐‘ง โˆˆ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) )
27 mapdpglem4.t4 โŠข ( ๐œ‘ โ†’ ๐‘ก = ( ( ๐‘” ยท ๐บ ) ๐‘… ๐‘ง ) )
28 mapdpglem4.xn โŠข ( ๐œ‘ โ†’ ๐‘‹ โ‰  ๐‘„ )
29 mapdpglem12.yn โŠข ( ๐œ‘ โ†’ ๐‘Œ โ‰  ๐‘„ )
30 mapdpglem17.ep โŠข ๐ธ = ( ( ( invr โ€˜ ๐ด ) โ€˜ ๐‘” ) ยท ๐‘ง )
31 eqid โŠข ( LSubSp โ€˜ ๐‘ˆ ) = ( LSubSp โ€˜ ๐‘ˆ )
32 eqid โŠข ( LSubSp โ€˜ ๐ถ ) = ( LSubSp โ€˜ ๐ถ )
33 1 3 8 dvhlmod โŠข ( ๐œ‘ โ†’ ๐‘ˆ โˆˆ LMod )
34 4 31 6 lspsncl โŠข ( ( ๐‘ˆ โˆˆ LMod โˆง ๐‘Œ โˆˆ ๐‘‰ ) โ†’ ( ๐‘ โ€˜ { ๐‘Œ } ) โˆˆ ( LSubSp โ€˜ ๐‘ˆ ) )
35 33 10 34 syl2anc โŠข ( ๐œ‘ โ†’ ( ๐‘ โ€˜ { ๐‘Œ } ) โˆˆ ( LSubSp โ€˜ ๐‘ˆ ) )
36 1 2 3 31 7 32 8 35 mapdcl2 โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) โˆˆ ( LSubSp โ€˜ ๐ถ ) )
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem19 โŠข ( ๐œ‘ โ†’ ๐ธ โˆˆ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) )
38 13 32 lssel โŠข ( ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) โˆˆ ( LSubSp โ€˜ ๐ถ ) โˆง ๐ธ โˆˆ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) ) โ†’ ๐ธ โˆˆ ๐น )
39 36 37 38 syl2anc โŠข ( ๐œ‘ โ†’ ๐ธ โˆˆ ๐น )
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem20 โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) = ( ๐ฝ โ€˜ { ๐ธ } ) )
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem22 โŠข ( ๐œ‘ โ†’ ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ( ๐บ ๐‘… ๐ธ ) } ) )
42 sneq โŠข ( โ„Ž = ๐ธ โ†’ { โ„Ž } = { ๐ธ } )
43 42 fveq2d โŠข ( โ„Ž = ๐ธ โ†’ ( ๐ฝ โ€˜ { โ„Ž } ) = ( ๐ฝ โ€˜ { ๐ธ } ) )
44 43 eqeq2d โŠข ( โ„Ž = ๐ธ โ†’ ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) = ( ๐ฝ โ€˜ { โ„Ž } ) โ†” ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) = ( ๐ฝ โ€˜ { ๐ธ } ) ) )
45 oveq2 โŠข ( โ„Ž = ๐ธ โ†’ ( ๐บ ๐‘… โ„Ž ) = ( ๐บ ๐‘… ๐ธ ) )
46 45 sneqd โŠข ( โ„Ž = ๐ธ โ†’ { ( ๐บ ๐‘… โ„Ž ) } = { ( ๐บ ๐‘… ๐ธ ) } )
47 46 fveq2d โŠข ( โ„Ž = ๐ธ โ†’ ( ๐ฝ โ€˜ { ( ๐บ ๐‘… โ„Ž ) } ) = ( ๐ฝ โ€˜ { ( ๐บ ๐‘… ๐ธ ) } ) )
48 47 eqeq2d โŠข ( โ„Ž = ๐ธ โ†’ ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ( ๐บ ๐‘… โ„Ž ) } ) โ†” ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ( ๐บ ๐‘… ๐ธ ) } ) ) )
49 44 48 anbi12d โŠข ( โ„Ž = ๐ธ โ†’ ( ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) = ( ๐ฝ โ€˜ { โ„Ž } ) โˆง ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ( ๐บ ๐‘… โ„Ž ) } ) ) โ†” ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) = ( ๐ฝ โ€˜ { ๐ธ } ) โˆง ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ( ๐บ ๐‘… ๐ธ ) } ) ) ) )
50 49 rspcev โŠข ( ( ๐ธ โˆˆ ๐น โˆง ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) = ( ๐ฝ โ€˜ { ๐ธ } ) โˆง ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ( ๐บ ๐‘… ๐ธ ) } ) ) ) โ†’ โˆƒ โ„Ž โˆˆ ๐น ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) = ( ๐ฝ โ€˜ { โ„Ž } ) โˆง ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ( ๐บ ๐‘… โ„Ž ) } ) ) )
51 39 40 41 50 syl12anc โŠข ( ๐œ‘ โ†’ โˆƒ โ„Ž โˆˆ ๐น ( ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ๐‘Œ } ) ) = ( ๐ฝ โ€˜ { โ„Ž } ) โˆง ( ๐‘€ โ€˜ ( ๐‘ โ€˜ { ( ๐‘‹ โˆ’ ๐‘Œ ) } ) ) = ( ๐ฝ โ€˜ { ( ๐บ ๐‘… โ„Ž ) } ) ) )