Metamath Proof Explorer


Theorem mapdpglem20

Description: Lemma for mapdpg . Baer p. 45, line 8: "...so that (Fy)*=Gy'." (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdpglem.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdpglem.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdpglem.v 𝑉 = ( Base ‘ 𝑈 )
mapdpglem.s = ( -g𝑈 )
mapdpglem.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdpglem.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdpglem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdpglem.x ( 𝜑𝑋𝑉 )
mapdpglem.y ( 𝜑𝑌𝑉 )
mapdpglem1.p = ( LSSum ‘ 𝐶 )
mapdpglem2.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdpglem3.f 𝐹 = ( Base ‘ 𝐶 )
mapdpglem3.te ( 𝜑𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) )
mapdpglem3.a 𝐴 = ( Scalar ‘ 𝑈 )
mapdpglem3.b 𝐵 = ( Base ‘ 𝐴 )
mapdpglem3.t · = ( ·𝑠𝐶 )
mapdpglem3.r 𝑅 = ( -g𝐶 )
mapdpglem3.g ( 𝜑𝐺𝐹 )
mapdpglem3.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
mapdpglem4.q 𝑄 = ( 0g𝑈 )
mapdpglem.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
mapdpglem4.jt ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) )
mapdpglem4.z 0 = ( 0g𝐴 )
mapdpglem4.g4 ( 𝜑𝑔𝐵 )
mapdpglem4.z4 ( 𝜑𝑧 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )
mapdpglem4.t4 ( 𝜑𝑡 = ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) )
mapdpglem4.xn ( 𝜑𝑋𝑄 )
mapdpglem12.yn ( 𝜑𝑌𝑄 )
mapdpglem17.ep 𝐸 = ( ( ( invr𝐴 ) ‘ 𝑔 ) · 𝑧 )
Assertion mapdpglem20 ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐸 } ) )

Proof

Step Hyp Ref Expression
1 mapdpglem.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdpglem.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
3 mapdpglem.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 mapdpglem.v 𝑉 = ( Base ‘ 𝑈 )
5 mapdpglem.s = ( -g𝑈 )
6 mapdpglem.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdpglem.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 mapdpglem.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 mapdpglem.x ( 𝜑𝑋𝑉 )
10 mapdpglem.y ( 𝜑𝑌𝑉 )
11 mapdpglem1.p = ( LSSum ‘ 𝐶 )
12 mapdpglem2.j 𝐽 = ( LSpan ‘ 𝐶 )
13 mapdpglem3.f 𝐹 = ( Base ‘ 𝐶 )
14 mapdpglem3.te ( 𝜑𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) )
15 mapdpglem3.a 𝐴 = ( Scalar ‘ 𝑈 )
16 mapdpglem3.b 𝐵 = ( Base ‘ 𝐴 )
17 mapdpglem3.t · = ( ·𝑠𝐶 )
18 mapdpglem3.r 𝑅 = ( -g𝐶 )
19 mapdpglem3.g ( 𝜑𝐺𝐹 )
20 mapdpglem3.e ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
21 mapdpglem4.q 𝑄 = ( 0g𝑈 )
22 mapdpglem.ne ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
23 mapdpglem4.jt ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) )
24 mapdpglem4.z 0 = ( 0g𝐴 )
25 mapdpglem4.g4 ( 𝜑𝑔𝐵 )
26 mapdpglem4.z4 ( 𝜑𝑧 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )
27 mapdpglem4.t4 ( 𝜑𝑡 = ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) )
28 mapdpglem4.xn ( 𝜑𝑋𝑄 )
29 mapdpglem12.yn ( 𝜑𝑌𝑄 )
30 mapdpglem17.ep 𝐸 = ( ( ( invr𝐴 ) ‘ 𝑔 ) · 𝑧 )
31 eqid ( 0g𝐶 ) = ( 0g𝐶 )
32 eqid ( LSAtoms ‘ 𝐶 ) = ( LSAtoms ‘ 𝐶 )
33 1 7 8 lcdlvec ( 𝜑𝐶 ∈ LVec )
34 eqid ( LSAtoms ‘ 𝑈 ) = ( LSAtoms ‘ 𝑈 )
35 1 3 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
36 eldifsn ( 𝑌 ∈ ( 𝑉 ∖ { 𝑄 } ) ↔ ( 𝑌𝑉𝑌𝑄 ) )
37 10 29 36 sylanbrc ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 𝑄 } ) )
38 4 6 21 34 35 37 lsatlspsn ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSAtoms ‘ 𝑈 ) )
39 1 2 3 34 7 32 8 38 mapdat ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSAtoms ‘ 𝐶 ) )
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem19 ( 𝜑𝐸 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) )
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 mapdpglem18 ( 𝜑𝐸 ≠ ( 0g𝐶 ) )
42 31 12 32 33 39 40 41 lsatel ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐸 } ) )