| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdpglem.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdpglem.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdpglem.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
mapdpglem.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 5 |
|
mapdpglem.s |
⊢ − = ( -g ‘ 𝑈 ) |
| 6 |
|
mapdpglem.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
mapdpglem.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
mapdpglem.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
mapdpglem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
mapdpglem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 11 |
|
mapdpglem1.p |
⊢ ⊕ = ( LSSum ‘ 𝐶 ) |
| 12 |
|
mapdpglem2.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
| 13 |
|
mapdpglem3.f |
⊢ 𝐹 = ( Base ‘ 𝐶 ) |
| 14 |
|
mapdpglem3.te |
⊢ ( 𝜑 → 𝑡 ∈ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) ⊕ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) ) |
| 15 |
|
mapdpglem3.a |
⊢ 𝐴 = ( Scalar ‘ 𝑈 ) |
| 16 |
|
mapdpglem3.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 17 |
|
mapdpglem3.t |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
| 18 |
|
mapdpglem3.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
| 19 |
|
mapdpglem3.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐹 ) |
| 20 |
|
mapdpglem3.e |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
| 21 |
|
mapdpglem4.q |
⊢ 𝑄 = ( 0g ‘ 𝑈 ) |
| 22 |
|
mapdpglem.ne |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 23 |
|
mapdpglem4.jt |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { 𝑡 } ) ) |
| 24 |
|
mapdpglem4.z |
⊢ 0 = ( 0g ‘ 𝐴 ) |
| 25 |
|
mapdpglem4.g4 |
⊢ ( 𝜑 → 𝑔 ∈ 𝐵 ) |
| 26 |
|
mapdpglem4.z4 |
⊢ ( 𝜑 → 𝑧 ∈ ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 27 |
|
mapdpglem4.t4 |
⊢ ( 𝜑 → 𝑡 = ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) ) |
| 28 |
|
mapdpglem4.xn |
⊢ ( 𝜑 → 𝑋 ≠ 𝑄 ) |
| 29 |
|
mapdpglem12.yn |
⊢ ( 𝜑 → 𝑌 ≠ 𝑄 ) |
| 30 |
|
mapdpglem17.ep |
⊢ 𝐸 = ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑧 ) |
| 31 |
27
|
oveq2d |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑡 ) = ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) ) ) |
| 32 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
| 33 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
| 34 |
1 7 8
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
| 35 |
1 3 8
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 36 |
15
|
lvecdrng |
⊢ ( 𝑈 ∈ LVec → 𝐴 ∈ DivRing ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ DivRing ) |
| 38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
|
mapdpglem11 |
⊢ ( 𝜑 → 𝑔 ≠ 0 ) |
| 39 |
|
eqid |
⊢ ( invr ‘ 𝐴 ) = ( invr ‘ 𝐴 ) |
| 40 |
16 24 39
|
drnginvrcl |
⊢ ( ( 𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ∈ 𝐵 ) |
| 41 |
37 25 38 40
|
syl3anc |
⊢ ( 𝜑 → ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ∈ 𝐵 ) |
| 42 |
1 3 15 16 7 32 33 8
|
lcdsbase |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = 𝐵 ) |
| 43 |
41 42
|
eleqtrrd |
⊢ ( 𝜑 → ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 44 |
1 3 15 16 7 13 17 8 25 19
|
lcdvscl |
⊢ ( 𝜑 → ( 𝑔 · 𝐺 ) ∈ 𝐹 ) |
| 45 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 46 |
|
eqid |
⊢ ( LSubSp ‘ 𝐶 ) = ( LSubSp ‘ 𝐶 ) |
| 47 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 48 |
4 45 6
|
lspsncl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 49 |
47 10 48
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 50 |
1 2 3 45 7 46 8 49
|
mapdcl2 |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝐶 ) ) |
| 51 |
13 46
|
lssss |
⊢ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝐶 ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ⊆ 𝐹 ) |
| 52 |
50 51
|
syl |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) ⊆ 𝐹 ) |
| 53 |
52 26
|
sseldd |
⊢ ( 𝜑 → 𝑧 ∈ 𝐹 ) |
| 54 |
13 17 32 33 18 34 43 44 53
|
lmodsubdi |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · ( ( 𝑔 · 𝐺 ) 𝑅 𝑧 ) ) = ( ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · ( 𝑔 · 𝐺 ) ) 𝑅 ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑧 ) ) ) |
| 55 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 56 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
| 57 |
16 24 55 56 39
|
drnginvrr |
⊢ ( ( 𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ( 𝑔 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ) = ( 1r ‘ 𝐴 ) ) |
| 58 |
37 25 38 57
|
syl3anc |
⊢ ( 𝜑 → ( 𝑔 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ) = ( 1r ‘ 𝐴 ) ) |
| 59 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ ( Scalar ‘ 𝐶 ) ) |
| 60 |
1 3 15 56 7 32 59 8
|
lcd1 |
⊢ ( 𝜑 → ( 1r ‘ ( Scalar ‘ 𝐶 ) ) = ( 1r ‘ 𝐴 ) ) |
| 61 |
58 60
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑔 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ) = ( 1r ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 62 |
61
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑔 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ) · 𝐺 ) = ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) ) |
| 63 |
1 3 15 16 55 7 13 17 8 41 25 19
|
lcdvsass |
⊢ ( 𝜑 → ( ( 𝑔 ( .r ‘ 𝐴 ) ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) ) · 𝐺 ) = ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · ( 𝑔 · 𝐺 ) ) ) |
| 64 |
13 32 17 59
|
lmodvs1 |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹 ) → ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) = 𝐺 ) |
| 65 |
34 19 64
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ ( Scalar ‘ 𝐶 ) ) · 𝐺 ) = 𝐺 ) |
| 66 |
62 63 65
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · ( 𝑔 · 𝐺 ) ) = 𝐺 ) |
| 67 |
66
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · ( 𝑔 · 𝐺 ) ) 𝑅 ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑧 ) ) = ( 𝐺 𝑅 ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑧 ) ) ) |
| 68 |
30
|
oveq2i |
⊢ ( 𝐺 𝑅 𝐸 ) = ( 𝐺 𝑅 ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑧 ) ) |
| 69 |
67 68
|
eqtr4di |
⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · ( 𝑔 · 𝐺 ) ) 𝑅 ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑧 ) ) = ( 𝐺 𝑅 𝐸 ) ) |
| 70 |
31 54 69
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝐴 ) ‘ 𝑔 ) · 𝑡 ) = ( 𝐺 𝑅 𝐸 ) ) |