Metamath Proof Explorer


Theorem mapdpglem21

Description: Lemma for mapdpg . (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H = LHyp K
mapdpglem.m M = mapd K W
mapdpglem.u U = DVecH K W
mapdpglem.v V = Base U
mapdpglem.s - ˙ = - U
mapdpglem.n N = LSpan U
mapdpglem.c C = LCDual K W
mapdpglem.k φ K HL W H
mapdpglem.x φ X V
mapdpglem.y φ Y V
mapdpglem1.p ˙ = LSSum C
mapdpglem2.j J = LSpan C
mapdpglem3.f F = Base C
mapdpglem3.te φ t M N X ˙ M N Y
mapdpglem3.a A = Scalar U
mapdpglem3.b B = Base A
mapdpglem3.t · ˙ = C
mapdpglem3.r R = - C
mapdpglem3.g φ G F
mapdpglem3.e φ M N X = J G
mapdpglem4.q Q = 0 U
mapdpglem.ne φ N X N Y
mapdpglem4.jt φ M N X - ˙ Y = J t
mapdpglem4.z 0 ˙ = 0 A
mapdpglem4.g4 φ g B
mapdpglem4.z4 φ z M N Y
mapdpglem4.t4 φ t = g · ˙ G R z
mapdpglem4.xn φ X Q
mapdpglem12.yn φ Y Q
mapdpglem17.ep E = inv r A g · ˙ z
Assertion mapdpglem21 φ inv r A g · ˙ t = G R E

Proof

Step Hyp Ref Expression
1 mapdpglem.h H = LHyp K
2 mapdpglem.m M = mapd K W
3 mapdpglem.u U = DVecH K W
4 mapdpglem.v V = Base U
5 mapdpglem.s - ˙ = - U
6 mapdpglem.n N = LSpan U
7 mapdpglem.c C = LCDual K W
8 mapdpglem.k φ K HL W H
9 mapdpglem.x φ X V
10 mapdpglem.y φ Y V
11 mapdpglem1.p ˙ = LSSum C
12 mapdpglem2.j J = LSpan C
13 mapdpglem3.f F = Base C
14 mapdpglem3.te φ t M N X ˙ M N Y
15 mapdpglem3.a A = Scalar U
16 mapdpglem3.b B = Base A
17 mapdpglem3.t · ˙ = C
18 mapdpglem3.r R = - C
19 mapdpglem3.g φ G F
20 mapdpglem3.e φ M N X = J G
21 mapdpglem4.q Q = 0 U
22 mapdpglem.ne φ N X N Y
23 mapdpglem4.jt φ M N X - ˙ Y = J t
24 mapdpglem4.z 0 ˙ = 0 A
25 mapdpglem4.g4 φ g B
26 mapdpglem4.z4 φ z M N Y
27 mapdpglem4.t4 φ t = g · ˙ G R z
28 mapdpglem4.xn φ X Q
29 mapdpglem12.yn φ Y Q
30 mapdpglem17.ep E = inv r A g · ˙ z
31 27 oveq2d φ inv r A g · ˙ t = inv r A g · ˙ g · ˙ G R z
32 eqid Scalar C = Scalar C
33 eqid Base Scalar C = Base Scalar C
34 1 7 8 lcdlmod φ C LMod
35 1 3 8 dvhlvec φ U LVec
36 15 lvecdrng U LVec A DivRing
37 35 36 syl φ A DivRing
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 mapdpglem11 φ g 0 ˙
39 eqid inv r A = inv r A
40 16 24 39 drnginvrcl A DivRing g B g 0 ˙ inv r A g B
41 37 25 38 40 syl3anc φ inv r A g B
42 1 3 15 16 7 32 33 8 lcdsbase φ Base Scalar C = B
43 41 42 eleqtrrd φ inv r A g Base Scalar C
44 1 3 15 16 7 13 17 8 25 19 lcdvscl φ g · ˙ G F
45 eqid LSubSp U = LSubSp U
46 eqid LSubSp C = LSubSp C
47 1 3 8 dvhlmod φ U LMod
48 4 45 6 lspsncl U LMod Y V N Y LSubSp U
49 47 10 48 syl2anc φ N Y LSubSp U
50 1 2 3 45 7 46 8 49 mapdcl2 φ M N Y LSubSp C
51 13 46 lssss M N Y LSubSp C M N Y F
52 50 51 syl φ M N Y F
53 52 26 sseldd φ z F
54 13 17 32 33 18 34 43 44 53 lmodsubdi φ inv r A g · ˙ g · ˙ G R z = inv r A g · ˙ g · ˙ G R inv r A g · ˙ z
55 eqid A = A
56 eqid 1 A = 1 A
57 16 24 55 56 39 drnginvrr A DivRing g B g 0 ˙ g A inv r A g = 1 A
58 37 25 38 57 syl3anc φ g A inv r A g = 1 A
59 eqid 1 Scalar C = 1 Scalar C
60 1 3 15 56 7 32 59 8 lcd1 φ 1 Scalar C = 1 A
61 58 60 eqtr4d φ g A inv r A g = 1 Scalar C
62 61 oveq1d φ g A inv r A g · ˙ G = 1 Scalar C · ˙ G
63 1 3 15 16 55 7 13 17 8 41 25 19 lcdvsass φ g A inv r A g · ˙ G = inv r A g · ˙ g · ˙ G
64 13 32 17 59 lmodvs1 C LMod G F 1 Scalar C · ˙ G = G
65 34 19 64 syl2anc φ 1 Scalar C · ˙ G = G
66 62 63 65 3eqtr3d φ inv r A g · ˙ g · ˙ G = G
67 66 oveq1d φ inv r A g · ˙ g · ˙ G R inv r A g · ˙ z = G R inv r A g · ˙ z
68 30 oveq2i G R E = G R inv r A g · ˙ z
69 67 68 eqtr4di φ inv r A g · ˙ g · ˙ G R inv r A g · ˙ z = G R E
70 31 54 69 3eqtrd φ inv r A g · ˙ t = G R E